Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (04): 574-584.doi: 10.3724/SP.J.1006.2015.00574

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic Composition and Its Transmissibility Analysis of Wheat Candidate Backbone Parent Kenong 9204

ZHAO Chun-Hua1,2,5,FAN Xiao-Li1,2,4,WANG Wei-Lian3,ZHANG Wei1,2,HAN Jie1,2,4,CHEN Mei1,2,4,JI Jun1,2,CUI Fa1,2,*,LI Jun-Ming1,2,*   

  1. 1 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China;  2 State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences, Beijing 100101, China; 3 Plant Protection Quarantine Station of Shijiazhuang, Shijiazhuang 050051, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
  • Received:2014-06-27 Revised:2014-02-06 Online:2015-04-12 Published:2015-02-14
  • Contact: 李俊明, E-mail: ljm@sjziam.ac.cn, Tel: 0311-85887272; 崔法, E-mail: facui@sjziam.ac.cn, Tel: 0311-85887272 E-mail:sdauzch@126.com

Abstract:

Kenong 9204 (KN9204), a wheat cultivar with high yield potential and high nitrogen use efficiency (NUE), has a diverse genetic basis containing genetic materials of Jimai 38, Xiaoyan 5, Mianyang 75-18, Xiaoyan 693, and Aifeng 3. In this study, the genotypic map of KN9204 was released, which embraced 221 PCR-derived markers and 89 DArT markers. On chromosome 2DL, the region of Xmag3596Xmag4089 harbored QTLs for increasing thousand-kernel weight and grain nitrogen content. On chromosome 4BL, Xcnl10 was close to the QTLs for increasingkernel number per spike and decreasing plant height and spike exsertion. On chromosome 6BS, Xcnl113 and Xwmc756 were closely linked with QTLs for decreasing plant height, spike exsertion and peduncle length. These markers had the transmissibility of 100% in the derivatives. The transmissibility of KN9204 elite genotypes was analyzed by known associated markers. The percentages of marker transmissibility from KN9204 to its derivates were 71.6% for one locus associated with kernel number per spike, 100.0% for four loci associated with thousand-kernel weight and 100.0% for three out of four loci associated with root traits. The high transmissibility of KN9204 genotypes on these loci might attribute to the excellent agronomictraits of KN9204. The important chromosomal regions harboring QTLs for elite agronomic traits are deduced to be the genetic basis of KN9204 serving as a candidate backbone parent.

Key words: Wheat, Backbone parent, Genotypic map, Important chromosomal region, Elite alleles

[1]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003



Zhuang Q S. Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003 (in Chinese)



[2]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535



Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering, agronomic important genes. Sci Agric Sin, 2006, 39: 1526–1535 (in Chinese with English abstract)



[3]Christopher M, Mace E, Jordan D, Rodgers D, McGowan P, Delacy I, Banks P, Sheppard J, Butler D, Poulsen D. Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 2007, 154: 307–316



[4]李小军, 徐鑫, 刘伟华, 李秀全, 李立会. 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009, 42: 3397–3404



Li X J, Xu X, Liu W H, Li X Q, Li L H. Genetic diversity of the founder parent orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009, 42: 3397–3404 (in Chinese with English abstract)



[5]韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇. 小麦骨干亲本杂交组合“胜利麦/燕大1817”及其衍生品种遗传构成解析. 作物学报, 2009, 35: 1395–1404



Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y. Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009, 35: 1395–1404 (in Chinese with English abstract)



[6]袁园园, 王庆专, 崔法, 张景涛, 杜斌, 王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递. 作物学报, 2010, 36: 9−16



Yuan Y Y, Wang Q Z, Cui F, Zhang J T, Du B, Wang H G. Specific loci in genome of wheat milestone parent Bima 4 and their transmission in derivatives. Acta Agron Sin, 2010, 36: 9−16 (in Chinese with English abstract)



[7]崔法, 赵春华, 鲍印广, 宗浩, 王玉海, 王庆庄, 杜斌, 马航运, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2010, 36: 1450–1456



Cui F, Zhao C H, Bao Y G, Zong H, Wang Y H, Wang Q Z, Du B, Ma H Y, Wang H G. Genetic differences in homoeologous group 1 of seven types of winter wheat Aimengniu, Acta Agron Sin, 2010, 36: 1450–1456 (in Chinese with English abstract)



[8]赵春华, 崔法, 李君, 丁安明, 李兴锋, 高居荣, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异分析. 作物学报, 2011, 37: 1333–1341



Zhao C H, Cui F, Li J, Ding A M, Li X F, Gao J R, Wang H G. Genetic difference of siblines derived from winter wheat germplasm “Aimengniu”. Acta Agron Sin, 2011, 37: 1333–1341 (in Chinese with English abstract)



[9]肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎. 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011, 44: 3919–3929



Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H. Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011, 44: 3919–3929 (in Chinese with English abstract)



[10]徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会. 小麦骨干亲本“洛夫林10号”1BL/1RS在衍生品种中的遗传分析. 麦类作物学报, 2010, 30: 221–226



Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H. Inheritance of 1BL/1RS of founder parent Lovrin 10 in its progeny. J Triticeae Crops, 2010, 30: 221−226 (in Chinese with English abstract)



[11]贾永国, 安调过, 李俊明, 童依平, 安忠民. 不同小麦基因型孕穗期根系性状与吸氮量的关系. 华北农学报, 2006, 21: 37–40



Jia Y G, An D G, Li J M, Tong Y P, An Z M. Study on the effects of root traits on nitrogen uptake by different wheat genotypes at booting stage. Acta Agric Boreali-Sin, 2006, 21: 37–40 (in Chinese with English abstract)



[12]童依平,李继云,李振声. 不同小麦品种系吸收利用氮素效率的差异及有关机理研究:影响利用效率的因素分析. 西北植物学报, 1999, 19: 598–604



Tong Y P, Li J Y, Li Z S. Genotype variations for nitrogen use efficiency in winter wheat (Triticum aestivum L.): factors affecting utilization efficiency of nitrogen. Acta Bot Boreali-Occident Sin, 1999, 19: 598–604 (in Chinese with English abstract)



[13]Wang R F, An D G, Hu C S, Li L H, Zhang Y M, Jia Y G, Tong Y P. Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop Pasture Sci, 2011, 62: 504–514



[14]Cui Z L, Zhang F S, Chen X P, Li F, Tong Y P. Using in-season nitrogen management and wheat cultivars to improve nitrogen use efficiency. Soil Fert Plant Nutr, 2011, 75: 976–983



[15]Cui F, Fan X L, Zhao C H, Zhang W, Chen M, Ji J, Li J M. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014, 15: 57



[16]Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet, 2014, 27: 659–675



[17]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu 8679. Theor Appl Genet, 2009, 118: 313–325



[18]Zhang D L, Hao C Y, Wang L F, Zhang X Y. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236: 1507–1517



[19]Wang L F, Ge H M, Hao C Y, Dong Y S, Zhang X Y. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PloS One, 2012, 7: 1–10



[20]Quarrie S A, Quarrie S P, Radosevic R, Rancic D, Kaminska A, Barnes J D, Leverington M, Ceoloni C, Dodig D. Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot, 2006, 57: 2627–2637



[21]Cuthbert J L, Somers D J, Brule-Babel A L, Brown P D, Crow G H. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 595–608



[22]Tsilo T J, Hareland G A, Simsek S, Chao S, Anderson J A. Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet, 2010, 121: 717–730



[23]Huang X Q, Kempf H, Ganal M W, Röder M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 933–943



[24]Sun X C, Marza F, Ma H X, Carver B F, Bai G H. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet, 2010, 120: 1041–1051



[25]Gupta P K, Rustig S, Kumar N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571



[26]Sanguineti M C, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T, Tuberosa R. Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol, 2007, 151: 291–305



[27]刘成, 杨足君, 冯娟, 周建平, 迟世华, 任正隆. 利用小麦微卫星引物建立簇毛麦染色体组特异性标记. 遗传, 2006, 28: 1573–1579



Liu C, Yang Z J, Feng J, Zhou J P, Chi S H, Ren Z L. Development of Dasypyrum genome specific marker by using wheat microsatellites. Hereditas (Beijing), 2006, 28: 1573–1579 (in Chinese with English abstract)



[28]Pestsova E, Röder M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theor Appl Genet, 2002, 106: 84–91



[29]Shoemaker R C, Guffy R D, Lorenzen L L, Specht J E. Molecular genetic mapping of soybean: map utilization. Crop Sci, 1992, 32: 1091–1098



[30]李俊, 王琴, 魏会廷, 胡晓蓉, 蒲宗君, 杨武云. 太谷核不育小麦衍生材料川6415在其后代中的遗传分析. 分子植物育种, 2012, 10: 662–667



Li J, Wang Q, Wei H T, Hu X R, Pu Z J, Yang W Y. Genetic analysis of Chuan 6415 derived from Taigu nuclear male-sterility wheat in its progenies. Mol Plant Breed, 2012, 10: 662–667 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[8] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[9] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!