Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (08): 1168-1175.doi: 10.3724/SP.J.1006.2016.01168

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association Analysis for MixographProperties in Ningmai 9 and Its Derivatives

JIANG Peng,ZHANG Ping-Ping,ZHANG Xu,CHEN Xiao-Lin,MA Hong-Xiang*   

  1. Jiangsu Academy of Agricultural Sciences / Jiangsu Provincial Key Laboratory for Agrobiology / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, China
  • Received:2015-11-17 Revised:2016-03-14 Online:2016-08-12 Published:2016-05-09
  • Contact: 马鸿翔, E-mail: hxma@jaas.ac.cn E-mail:hmjp2005@163.com
  • Supported by:

    Thisstudy was supported by China Agriculture Research System (CARS-3), Jiangsu Provincial Fundfor Independent Innovation in Agricultural Sciences(CX14-2002),andJiangsu Science & Technology Pillar Program(BE2013439, BE2015352).

Abstract:

The mixograph property is one of the rheological properties affecting the quality of end-use products in wheat. Ningmai 9 isa soft wheat cultivar planted largely in the middle and lower reaches of Yangtze River and served as a main parent of 17released wheat cultivars. For the purpose of utilizing Ningmai 9 in molecular marker-assisted selection, 185 polymorphic SSRmarkers associated with mixograph properties were tested in Ningmai 9 and its 117 derivatives. The mixed-linear model (MLM) was used in combination of phenotypic data collected in the 2009–2010 and 2010–2011 growing seasons. A total of 13 SSRs were identified to be significantly associated with mixograph properties (P<0.01), explaining 5.71–12.33% of phenotypic variations.Among the 13 markers, three, three, two, and seven were associated with mix time (MT),peak height (PH), peak width (PW), eight-minute width (8MW),respectively. MarkersXwmc11, Xbarc320, Xbarc110,and Xgwm577 for 8MW,Xwmc594 for MT,and Xgwm299 for PWwere identified over two years. Besides, Xwmc594 and Xgwm577 were associated with both (MT) and 8MW. The six markers identified over two years all negativelyaffectedmixograph parametersat Ningmai 9 background and might be used in softwheat breeding.

Key words: Wheat, Mixograph parameters, Association analysis, Molecular markers

[1]孙彩玲, 田纪春, 张永祥. 6种电子仪器在小麦粉面团评价中的应用. 实验科学与技术, 2007, 5(3): 46–49
Sun C L,Tian J C, Zhang Y X. Application of texture analyzer in the evaluation of the wheat paste quality.ExpSci& Tech, 2007, 5(3): 46–49 (in Chinese with English abstract)
[2] 刘艳玲, 田纪春, 韩祥铭, 邓志英. 面团流变学特性分析方法比较及与烘烤品质的通径分析. 中国农业科学, 2005, 38: 45–51
Liu Y L, Tian J C, Han X M, Deng Z Y. Comparison of different dough rheological measurement and the path coefficient analysis on bread quality.SciAgric Sin, 2005, 38: 45–51 (in Chinese with English abstract)
[3] 姜小苓, 李淦, 董娜, 李小军, 冯素伟, 胡铁柱, 茹振钢. 小麦面团揉混特性的遗传变异及与其他品质性状的相关性. 麦类作物学报, 2013, 33: 806–811
Jiang X L, Li G, Dong N, Li X J, Feng S W, Hu T Z, Ru Z G. Genetic variation of dough mixograph characters and their relationships with other quality traits in wheat. J Triticeae Crops, 2013, 33: 806–811 (in Chinese with English abstract)
[4] 申小勇, 阎俊, 陈新民, 张艳, 李慧玲, 王德森, 何中虎, 张勇. 和面仪参数与粉质仪、拉伸仪及面包成品加工品质主要参数的关系. 作物学报, 2010, 36: 1037–1043
Shen X Y, Yan J, Chen X M, Zhang Y, Li H L, Wang D S, He Z H, Zhang Y. Relationship of mixograph parameters with farinograph and extensograph parameters, and bread-making quality traits.ActaAgron Sin, 2010, 36: 1037–1043 (in Chinese with English abstract)
[5] 李永强, 翟红梅, 田纪春. 蛋白质和淀粉含量对小麦面团流变学特性的影响. 作物学报, 2007, 33: 937–941
Li Y Q, Zhai H M, Tian J C. Effect of protein and starch contents on wheat dough rheological properties. ActaAgron Sin, 2007, 33: 937–941 (in Chinese with English abstract)
[6] James C N, Cristina A, Flavio B, Patrick L F, Daisy G G, Christine J B, Roberto J P, Marie R P, Philippe L, Calvin O Q, Mark E S. Quantitative trait locus analysis of wheat quality traits. Euphytica, 2006, 149: 145–159
[7] Morgan E S, Ajay K, Shahryar K, Senay S, Mohammed S A, Eder E M, Phillip E M, Edward L D, Elias E, Blaine S, Steven S X, Mohamed M. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary×non-supernumerary spikelet genotypes. TheorAppl Genet, 2015, 128: 893–912
[8] Li Y L, Zhou R H, Wang J, Liao X Z, Gerard B, Jia J Z. Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breed, 2012, 29: 627–643
[9] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticumaestivum L.) cultivars. Genetics, 2006, 172: 1165–1177
[10] Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). TheorAppl Genet, 2005, 111: 206–217
[11] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356
[12] Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci, 2011, 54: 137–147
[13] Jin H B, Wang Z J, Li D, Wu P P, Dong Z Y, Rong C W, Liu X, Qin H J, Li H L, Wang D W, Zhang K P. Genetic analysis of chromosomal loci affecting the content of insoluble glutenin in common wheat. J Genet Genomics, 2015, 42: 495–505
[14] 张勇, 张晓, 郭杰, 高德荣, 张伯桥. 软质小麦溶剂保持力关联分析. 作物学报, 2015, 41: 251–258
Zhang Y, Zhang X, Guo J, Gao D R, Zhang B Q. Association analysis of solvent retention capacity in soft wheat. ActaAgron Sin, 2015, 41: 251–258 (in Chinese with English abstract)
[15] 张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535
Zhang X Y, Tong Y P, You G X, Hao C Y, Ge H M, Wang L F, Li B, Dong Y C, Li Z S. Hitchhiking effect mapping: a new approach for discovering agronomic important genes. SciAgric Sin, 2006, 39: 1526–1535 (in Chinese with English abstract)
[16] 姜朋, 张平平, 张旭, 陈小霖, 姚金保, 马鸿翔. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析. 作物学报, 2015, 41: 1828–1835
Jiang P, Zhang P P, Zhang X, Chen X L, Yao J B, Ma H X. Genetic diversity and association analysis of protein content in weak glutenwheatningmai 9 and its derived lines. ActaAgron Sin, 2015, 41: 1828–1835 (in Chinese with English abstract)
[17] Andersen J R, Lubberstedt T. Functional markers in plants. Trends Plant Sci, 2003, 8: 554–560
[18] Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (TriticumaestivumL.).TheorAppl Genet, 2004, 109: 1105–1114
[19] Melissa J H, Daniel F, Matthew S, Jonathan K P. Inferring weak population structure with the assistance of sample group information. MolEcolResour, 2009, 9: 1322–1332
[20] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. MolEcol, 2005, 14: 2611–2620
[21] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635
[22] Autio K, Flander L. Bread quality relationship with rheological measurements of wheat flour dough. Cereal Chem, 2001, 78: 654–657
[23] Hibberd G E, Parker N S. Measurement of fundamental rheological properties of wheat flour doughs. Cereal Chem, 1975, 52:1–23
[24] Dexter J E, Matsuo R R, Preston K R, Kilborn R H. Comparison of gluten strength, mixing properties, baking quality and spaghetti quality of some Canadian durum and common wheats. Can Inst J Food Sci Tech, 1981, 14: 108–111
[25] Edwards N M, Mulvaney S J, Scanlon M G, Dexter J E. Role of gluten and its components in determining Durum Semelina dough viscoelastic properties. Cereal Chem, 2003, 80:755–763
[26] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003 (in Chinese)
[27] 姚金保, 姚国才, 杨学明, 钱存鸣, 王书文. 小麦穗部性状的配合力和遗传力分析. 上海农业学报, 2004, 20(3): 32–36
Yao J B, Yao G C, Yang X M, Qian C M, Wang S W. Combining ability and heritability analysis of wheat spike characters. ActaAgric Shanghai, 2004, 20(3): 32–36 (in Chinese with English abstract)
[28] 姚金保, 姚国才, 杨学明, 马鸿翔, 张平平. 小麦收获指数遗传及其与农艺性状的相关分析. 江苏农业学报, 2008, 24(1): 5–10
Yao J B, Yao G C, Yang X M, Ma H X, Zhang P P. Inheritance of wheat harvest index and its correlations with agronomic traits. Jiangsu J AgricSci, 2008, 24(1): 5–10 (in Chinese with English abstract)
[29] 张平平, 姚金保, 马鸿翔. 小麦溶剂保持力的遗传分析. 江苏农业学报, 2010, 26: 1170–1175
Zhang P P, Yao J B, Ma H X. Genetic analysis of solvent retention capacity in wheat. Jiangsu J AgricSci, 2010, 26: 1170–1175 (in Chinese with English abstract)
[30] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦产量构成因素的双列杂交分析. 核农学报, 2011, 25: 633–638
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Diallel analysis for yield components of wheat. ActaAgricNucl Sin, 2011, 25: 633–638 (in Chinese with English abstract)
[31] 姚金保, 张平平, 任丽娟, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 软质冬小麦品种籽粒蛋白质含量的遗传分析. 江苏农业学报, 2011, 27: 469–474
Yao J B, Zhang P P, Ren L J, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Inheritance of grain protein content in soft red wheat cultivars. Jiangsu J AgricSci, 2011, 27: 469–474 (in Chinese with English abstract)
[32] 姚金保, 任丽娟, 张平平, 杨学明, 马鸿翔, 姚国才, 张鹏, 周淼平. 小麦赤霉病的抗性遗传分析. 麦类作物学报, 2011, 31: 370–375
Yao J B, Ren L J, Zhang P P, Yang X M, Ma H X, Yao G C, Zhang P, Zhou M P. Genetic analysis of resistance to Fusarium head blight in wheat. J Triticeae Crops, 2011, 31: 370–375 (in Chinese with English abstract)
[33] McCartney C A, Somers D J, Lukow O, Ames N, Noll J, Cloutier S, Humphreys D G, McCallum B D. QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed, 2006, 125: 565–575
[34] Patil R M, Oak M D, Tamhankar S A, Rao V S. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (TriticumturgidumL. ssp.durum). J Cereal Sci, 2009, 49: 378–386
[35] Samir K, Patricia G, Marta R, Francisco V, Kathy A, Odean M L, Marion S R, Somers D J, Carrillo J M. Mapping quantitative trait loci (QTLs) associated with dough quality in a soft × hard bread wheat progeny. J Cereal Sci, 2010, 52: 46–52
[36] Prashant R, Mani E, Rai R, Gupta R K, Tiwari R, Dholakia B, Oak M, Marion R, Narendra K, Vidya G. Genotype × environment interactions and QTL clusters underlying dough rheology traits in TriticumaestivumL. J Cereal Sci, 2015, 64: 82–91
[37] Poole G J, Smiley R W, Paulitz T C, Walker C A, Carter A H, See D R, Garland-Campbell K. Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. TheorAppl Genet, 2012, 125: 91–107
[38] Martin A, Bovill W D, Percy C D, Herde D, Fletcher S, Kelly A, Neate S M, Sutherland M W. Markers for seedling and adult plant crown rot resistance in four partially resistant bread wheat sources. TheorAppl Genet, 2015, 128: 377–385
[39] Lin F, Chen X M. Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. TheorApplGenet, 2009, 118: 631–642
[40] Genc Y, Oldach K, Verbyla A P, Lott G, Hassan M, Tester M, Wallwork H, McDonald G K. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. TheorAppl Genet, 2010, 121: 877–894
[41] Thomas M, Tobias W, Hans P M, Viktor K, Erhard E, Jochen C R. Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breeding, 2011, 28: 647–655
[42] Jochen C R, Manje G, Hans P M, Longin C F H, Viktor K, Erhard E, Reiner B, Christof P, Tobias W. Association mapping for quality traits in soft winter wheat. TheorAppl Genet, 2011, 122: 961–970
[43] Deng Z Y, Zhao L, Liu B, Zhang K P, Chen J S, Qu H L, Sun C L, Zhang Y X , Tian J C. Conditional QTL mapping of sedimentation volume on seven quality traits in common Wheat. J IntegrAgric, 2013, 12: 2125–2133
[44] Magdalena R J, Pawel C C. Genetic mapping of quantitative trait loci (QTL) for resistance to septoriatriticiblotch in a winter wheat cultivar Liwilla. Euphytica, 2014, 200: 109–125
[45] Chen S L, Gao R H, Wang H Y, Wen M X, Xiao J, Bian N F, Zhang R Q, Hu W J, Cheng S H, Bie T D, Wang X E. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015, 203: 583–594
[46] Barakat M N, Saleh M S, Al-Doss A A, Moustafa K A, Elshafei A A, Zakri A M, Al-Qurainy F H. Mapping of QTLs associated with abscisic acid and water stress in wheat. BiolPlantarum, 2015, 59: 291–297
[47] Jochen C R, Hans P M, Viktor K, Erhard E, Miedaner T, Tobias W. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. TheorAppl Genet, 2011, 123: 283–292
[48] Groos C, Bervas E, Chanliaud E, Charmet G. Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. TheorAppl Genet, 2007, 115: 313–323
[49] Sanyukta S, Kalpana S, Rajendra V, Suhas K, Sudhakar B, Pratti P, Nagendra K S, Renu K. Genomic regions associated with grain yield under drought stress in wheat (TriticumaestivumL.). Euphytica, 2015, 203: 449–467
[50] Sonja K, Bernd R, Ling J, Viktor K, Erhard E, Odile A, Maike H, Plieske J, Dagmar K, Martin W G, Marion S R. Genetic architecture of resistance to Septoriatritici blotch (Mycosphaerellagraminicola) in European winter wheat. Mol Breed, 2013, 32: 411–423
[51] Zhou X L, Wang M N, Chen X M, Lu Y, Kang Z S, Jing J X. Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. TheorAppl Genet, 2014, 127: 935–945

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[13] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[14] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[15] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!