Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1319-1327.doi: 10.3724/SP.J.1006.2017.01319

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of Gene GsWRKY15 Related to Alkaline Stress and Alkaline Tolerance of Transgenic Plants

ZHU Ping-Hui**,CHEN Ran-Ran**,YU Yang,SONG Xue-Wei,LI Hui-Qing,DU Jian-Ying,LI Qiang,DING Xiao-Dong,ZHU Yan-Ming*   

  1. Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
  • Received:2016-12-03 Revised:2017-05-10 Online:2017-09-12 Published:2017-05-22
  • Contact: 朱娉慧, E-mail: zhupinghui@outlook.com, Tel: 15604601520
  • Supported by:

    This study was supported by National Natural Science Foundation of China (31171578),Heilongjiang Provincial Higher School Science and Technology Innovation Team Building Program (2011TD005), and the Northeast Agricultural University Discipline Team Construction Project (Group 1).

Abstract:

WRKY proteins are members of a transcription factor family with Zinc-finger structure in higher plant, which participate in various responses to multiple stresses.In this study,we constructed a gene expression profile under alkaline treatment using RNA-seq data, from which we cloned a gene GsWRKY15.We analyzedtheexpression pattern of GsWRKY15 in roost of Glycine soja under alkaline stress, and found that this gene was up-regulated by alkaline stress,wirh the highest expression at one hour after alkaline treatment. We analyzed theexpression pattern of GsWRKY15 in different tissues of Glycine soja, and found that this gene could express in all tissues, with the highest expression level in flowers.GsWRKY15 was transformed into Zhaodong alfalfa by Agrobacteriumtumefaciens-mediated infection of alfalfa cotyledonary nodes, and 39 resistant plants were obtained. The results of PCR, Southern blot and RT-PCR showed that GsWRKY15 was integrated into the genome of Zhaodong alfalfa and expressed in transgenic plants. Alkaline tolerance analysis showed that the growth of transgenic alfalfa after two weeks of treatment with 150 mmol L–1 NaHCO3 was better than those of non-transgenic alfalfa. MDA content and relative membrane permeability were significantly higher while chlorophyll content was significantly lower in non-transgenic alfalfa than in transgenic alfalfa. And by analyzing t some stress response marker genes , we found that he expression levels of H+-Ppase, NADP-ME, KIN1, RD29A were higher in transgenic alfalfa than in non-transgenic alfalfa.Taken together we suggest that the expression of GsWRKY15 gene can enhance the alkaline-resistant ability of alfalfa.

Key words: Glycine soja, GsWRKY15, Zhaodong alfalfa, Agrobacterium tumefaciens, Alkaline tolerance

[1] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154–158
Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Res, 2005, 23(2): 154–158 (in Chinese with English abstract)
[2] 王鑫马, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003, 20(10): 39–41
Wang X M, Ma Y X, Li J. Alfalfa nutrient composition and main biological characteristics. Acta Pratac Sin, 2003, 20(10): 39–41 (in Chinese with English abstract)
[3] 乔建江, 王堃, 杨青川. 苜蓿转基因的研究现状和前景. 中国草地学报, 2006, 28(5): 98–103
Qiao J J, Wang K, Yang Q C. Research situation and future of transgenic alfalfa. Chin J Grassland, 2006, 28(5): 98–103 (in Chinese with English abstract)
[4] ülker B,Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7: 491–498
[5] Li J, Brader G, PalvaE T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 2004, 16: 319–331
[6] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6: 486–503
[7] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5(5): 199–206
[8] 李福山. 中国野生大豆资源的地理分布及生态分化研究. 中国农业科学, 1993, 26(2): 47–55
Li F S.Studies on the ecological and geographical distribution of the chinese resources of wild soybean(G. soja). Sci Agric Sin, 1993, 26(2): 47–55 (in Chinese with English abstract)
[9] Bai X, Liu J, Tang L, Cai H, Chen M, Ji W, Liu Y, Zhu Y. Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct Plant Biol, 2013, 40: 1048–1056
[10] 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明. 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报, 2013, 38: 971–979
Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M. Isolation of GsGST19 from Glycine soja and analysis of saline-alkaline tolerance for transgenic Medicago sativa. Acta Agron Sin, 2013, 38: 971–979 (in Chinese with English abstract)
[11] 魏正巍, 朱延明, 化烨, 才华, 纪巍, 柏锡, 王臻昱, 文益东. 转GsPPCK1基因苜蓿植株的获得及其耐碱性分析. 作物学报, 2013, 39: 68–75
Wei Z W, Zhu Y M, Hua Y, Cai H, Ji W, Bai X, Wang Z Y, Wen Y D. Transgenic alfalfa with GsPPCK1 and its alkaline tolerance analysis. Acta Agron Sin, 2013, 39: 68–75 (in Chinese with English abstract)
[12] 赵阳, 朱延明, 柏锡, 纪巍, 吴婧, 唐立郦, 才华. 转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析. 作物学报, 2014, 40: 431–438
Zhao Y, Zhu Y M, Bai X, Ji W, Wu J, Tang L L, Cai H. Over-expressing GsCBRLK/SCMRP enhances alkaline tolerance and methionine content in transgenic Medicago sativa. Acta Agron Sin, 2014, 40: 431–438 (in Chinese with English abstract)
[13] Sun M Z, Jia B W, Cui N, Wen Y D, Duanmu H Z, Yu Q Y, Xiao J L, Zhu Y M. Functional characterization of a Glycine sojaCa2+ATPase in salt–alkaline stress responses. Plant Mol Biol, 2016, 90: 419–434
[14] Sun M Z, Sun X L, Zhao Y, Zhao C Y, Duanmu H Z, Yu Y, Ji W, Zhu Y M. Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS One, 2013, 9: e89578
[15] Duanmu H Z, Wang Y, Bai X, Cheng S F, Deyholos M K, Wong G K, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu Y M. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomics, 2015, 15: 651–660
[16] Rio D C, Ares M J, Hannon G J, Nilsen T W. Purification of RNA using TRIzol (TRI Reagent). Cold Spring Harbor Protocols, 2010(6): pdb.prot5439
[17] Cline J, Braman J C, Hogrefe H H. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucl Acids Res, 1996, 24: 3546–3551
[18] Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem, 2008, 379: 127–129
[19] Geu-Flores F, Nour-Eldin H H, Nielsen M T, Halkier B A. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucl Acids Res, 2007, 35: e55
[20] Nour-Eldin H H, Hansen B G, N?rholm M H, Jensen J K, Halkier B A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucl Acids Res, 2006, 34(18): e122
[21] 盛慧, 朱延明, 李杰, 柏锡, 才华. DREB2A基因对苜蓿遗传转化的研究. 草业科学, 2007, 24(3): 40–45
Sheng H, Zhu Y M, Li J, Bai X, Cai H.Genetic transformation of DREB2A gene into alfalfa. Acta Pratac Sin, 2007, 24(3): 40–45
[22] 丁晓东, 吕柳新. 从顽拗植物荔枝中提取基因组DNA技术的研究. 应用与环境生物学报, 2000, 6(2): 142–145
Ding X D, Lyu L X. Study on genomic DNA extraction from recalcitrant litchi. Chinese J Appl Environ Biol, 2000, 6(2): 142–145 (in Chinese with English abstract)
[23] Mishra S, Bansal S, Sangwan R S, Sangwan N S. Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera. J Plant Biochem Biot, 2016, 25:191–198
[24] Hodges D M, Delong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604–611
[25] Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides: NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Anal Biochem, 1997, 251: 153–157
[26] Wellburn A R, Lichtenthaler H. Formulae and program to determinetotal carotenoids and chlorophylls a and b of leaf extracts in different solvents. Adv Photosynth Res, 1984: 9–12
[27] Shimono M, Sugano S J, Nakayama A, Jiang C J, Ono K, Toki S, Takatsuji H. Rice WRKY45 plays a crucial role in benzothiadiazole inducible blast resistance. Plant Cell, 2007, 19: 2064–2076
[28] Marè C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold and drought response in barley. Plant Mol Biol, 2004, 55: 399–416
[29] 秦伟, 赵光耀, 曲志才, 张立超, 段佳磊, 李爱丽, 贾继增, 孔秀英. 小麦白粉病菌诱导的TaWRKY34基因的鉴定与分析. 作物学报, 2010, 36: 249–255
Qin W, Zhao G Y, Qu Z C, Zhang L C, Duan J L, Li A L, Jia J Z, Kong X Y. Identification and analysis of TaWRKY34 gene induced by wheat powdery mildew (Blumeria graminis f. sp. tritici). Acta Agron Sin, 2010, 36: 249–255 (in Chinese with English abstract)
[30] 王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944–1951
Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944–1951 (in Chinese with English abstract)
[31] 田云, 卢向阳, 彭丽莎, 方俊. 植物WRKY转录因子结构特点及其生物学功能. 遗传, 2006, 28: 1607–1612
Tian Y, Lu X Y, Peng L S, Fang J. The structure and function of plant WRKY transcription factors. Hereditas(Beijing), 2006, 28: 1607–1612 (in Chinese)
[32] 江淑琼, 周守标, 刘坤, 程龙玲. 干旱胁迫对中国石蒜叶片形态和部分生理指标的影响. 北方园艺, 2010, (7):16–19
Jiang S Q, Zhou S B, Liu K, Chen L L. Effects of drought stress on morphology and partial physiological indexes of leaves in lycoris chinensis. Northern Hort, 2010, (7):16–19
[33] Tardieu F, Davies W J. Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol, 1992, 98: 540–545
[34] Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases regulation and biosynthesis. Plant Cell, 1999, 11: 677–690
[35] Davies D D. The fine control of cytosolic pH. Physiol Plant, 1986, 67:702–706

[1] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[2] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[3] CHEN Chen, SUN Xiao-Li, LIU Ai-Lin, DUAN-MU Hui-Zi, YU Yang, XIAO Jia-Lei, ZHU Yan-Ming. Cloning and Functional Analysis of Glycine soja Bicarbonate Stress Responsive Gene GsMIPS2 [J]. Acta Agron Sin, 2015, 41(09): 1343-1352.
[4] WANG Yun-Peng,MA Jing-Yong,MA Rui,MA Jian,LIU Wen-Guo. Cloning of New Herbicide Resistant Gene in Soil Metagenomics and the Generation of Transgenic Rice Plants [J]. Acta Agron Sin, 2014, 40(07): 1190-1196.
[5] ZHAO Yang,ZHU Yan-Ming,BAI Xi,JI Wei,WU Jing,TANG Li-Li,CAI Hua. Over-expressing GsCBRLK/SCMRP from Glycine soja Enhances Alkaline Tolerance and Methionine Content in Transgenic Medicago sativa [J]. Acta Agron Sin, 2014, 40(03): 431-438.
[6] FAN Hu, WEN Zi-Xiang, WANG Chun-E, WANG Fang, XING Guang-Nan, ZHAO Tuan-Jie,GAI Jun-Yi. Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population [J]. Acta Agron Sin, 2013, 39(05): 775-788.
[7] WEI Zheng-Wei,ZHU Yan-Ming,HUA Ye,CAI Hua,JI Wei,BAI Xi,WANG Zhen-Yu,WEN Yi-Dong. Transgenic Alfalfa with GsPPCK1 and Its Alkaline Tolerance Analysis [J]. Acta Agron Sin, 2013, 39(01): 68-75.
[8] WANG Zhen-Yu,CAI Hua,BAI Xi,JI Wei,LI Yong,WEI Zheng-Wei,ZHU Yan-Ming. Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa [J]. Acta Agron Sin, 2012, 38(06): 971-979.
[9] CAI Hua, ZHU Yan-Meng, LI Yong, BAI Ti, JI Wei, WANG Dong-Dong, SUN Xiao-Li. Isolation and Tolerance Analysis of GsNAC20 Gene Linked to Response to Stress in Glycine soja [J]. Acta Agron Sin, 2011, 37(08): 1351-1359.
[10] XIAO Xin-Hui, LI Xiang-Hua, LIU Xiang, ZHANG Ying, WANG Ke-Jing. Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress [J]. Acta Agron Sin, 2011, 37(07): 1289-1300.
[11] HUANG Tian-Dai, LI Zhe, SUN Ai-Hua, ZHOU Quan-Nan, HUA Yu-Wei, HUANG Hua-Sun. Establishment of Agrobacterium tumefaciens -mediated Anther Calli Transformation System in Hevea brasiliensis [J]. Acta Agron Sin, 2010, 36(10): 1691-1697.
[12] WANG Xi, LI Yong, ZHU Yan-Ming, BAI Xi, CAI Hua, JI Wei. Cloning and Tolerance Analysis of GsANN Gene Related to Response on Stress in Glycine soja [J]. Acta Agron Sin, 2010, 36(10): 1666-1673.
[13] MA Xiong-Feng, YU Chun-Meng, TANG Shou-Wei, GUO San-Dui, ZHANG Dui, WANG Yan-Zhou, SHU Ai-Guo, SHU Si-Yuan, XIONG He-Beng. Transgenic of Ramie with Synthetic CryIA+CpTI Gene by Agrobacterium tumefaciens-Mediated [J]. Acta Agron Sin, 2010, 36(05): 788-793.
[14] QI Dong-Ling,GUO Gui-Zhen,LEE Myung-Chul,YANG Chun-Gang,ZHANG Jun-Guo,CAO Gui-Lan,ZHANG San-Yuan,SUH Seok-Cheol,ZHOU Qing-Yang,HAN Long-Zhi. Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage under Alkaline Stress in Japonica Rice [J]. Acta Agron Sin, 2009, 35(2): 301-308.
[15] TAN Xiao-Li,KONG Fan-Ming,ZHANG Li-Li,CHEN Song,QI Chui-Kou. Cloning and Analysis of Hemoglobin Gene in Cyanobacterium and Transformation into Brassica napus L. [J]. Acta Agron Sin, 2009, 35(1): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!