Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (12): 1809-1817.doi: 10.3724/SP.J.1006.2018.01809

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of SNP and Allele-specific Expression in Transcriptome of Sorghum bicolor × Sorghum sudanense and Their Parents

Jing DONG1,Xiao-Ping LU1,*(),Kun-Ming ZHANG1,Chun-Lei XUE1,Rui-Xia ZHANG2   

  1. 1 Agronomy College, Inner Mongolia Agricultural University, Huhhot 010019, Inner Mongolia, China
    2 Huhhot Seed Management Station, Huhhot 010020, Inner Mongolia, China
  • Received:2017-12-21 Accepted:2018-07-20 Online:2018-12-12 Published:2018-07-25
  • Contact: Xiao-Ping LU E-mail:lxp1960@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31160302);This study was supported by the National Natural Science Foundation of China(31460375);the Science and Technology Plan Projects of Hohhot (2012-major-plans-8-2)

Abstract:

Taking root, stem and leaf tissues of S. sudanense hybrids and their parents as test materials, Illumina Hiseq 2000 was used to analyze the transcriptome to explore the relationship between single nucleotide variation and heterosis in the hybrids of Sorghum bicolor × S. sudanense and their parents. About 58 000 SNP loci were detected from the sequencing samples with an average length of 58 122 160 bp. The number of genic SNP was significantly more than that of intergenic SNP. The frequency of SNP was 1/741 bp, and the conversion ratio of the average conversion was 1.00:1.53. Among all the types of variation, C/T and G/A had the highest frequency. After screening, 198 (21%) extremely significant biased alleles were expressed in bias SNP, and 65% of them were biased towards paternal white shell S. sudanense, and many of the transcriptional copies with high level gene expression in the white shell S. sudanense were also expressed in the Sorghum bicolorss × S. sudanense hybrid. The two parental alleles with 79%, 78%, and 82% transcripts showed a stable level of expression in the three tissues. It is suggested that the trans-acting may affect the specific expression of the allele more than the cis-acting. Six highly-biased SNP-unigene alleles were selected for qRT-PCR validation. The differential gene expression pattern of these genes was consistent with that of RNA-Seq analysis. Illumina sequencing technology was used to study allelic expression in this study, provides a basis for heterosis analysis of Sorghum bicolor × S. sudanense and also a theoretical reference for related studies of other forage crops.

Key words: Sorghum bicolor × S. sudanense;, heterosis, transcriptomics, single nucleotide polymorphism, functional annotion

Table 1

Material used in this study"

编号
No.
材料名称(组织)
Material name (tissue)
编号
No.
材料名称(组织)
Material name (tissue)
1 白壳苏丹草(根I) White shell Sudan grass (root I) 15 高粱11A (叶II) Sorghum 11A (leaf II)
2 白壳苏丹草(茎I) White shell Sudan grass (stem I) 16 F1 (根II) F1 (root II)
3 白壳苏丹草(叶I) White shell Sudan grass (leaf I) 17 F1 (茎II) F1 (stem II)
4 高粱11A (根I) Sorghum 11A (root I) 18 F1 (叶II) F1 (leaf II)
5 高粱11A (茎I) Sorghum 11A (stem I) 19 白壳苏丹草(根 III) White shell Sudan grass (root III)
6 高粱11A (叶I) Sorghum 11A (leaf I) 20 白壳苏丹草(茎 III) White shell Sudan grass (stem III)
7 F1 (根I) F1 (root I) 21 白壳苏丹草(叶 III) White shell Sudan grass (leaf III)
8 F1 (茎I) F1 (stem I) 22 高粱11A (根 III) Sorghum 11A (root III)
9 F1 (叶I) F1 (leaf I) 23 高粱11A (茎 III) Sorghum 11A (stem III)
10 白壳苏丹草(根II) White shell Sudan grass (root II) 24 高粱11A (叶 III) Sorghum 11A (leaf III)
11 白壳苏丹草(茎II) White shell Sudan grass (stem II) 25 F1 (根III) F1 (root III)
12 白壳苏丹草(叶II) White shell Sudan grass (leaf II) 26 F1 (茎III) F1 (stem III)
13 高粱11A (根II) Sorghum 11A (root II) 27 F1 (叶III) F1 (leaf III)
14 高粱11A (茎II) Sorghum 11A (stem II)

Table 2

Statistics of SNP sites"

材料编号
Material number
总读长
Total reads
SNP数
SNP number
基因内SNP
Genic SNP
基因间SNP
Intergenic SNP
转换
Transition (%)
颠换
Transversion (%)
杂合型
Heterozygosity (%)
1 63 420 052 64 836 59 809 5027 60.19 39.81 10.11
2 59 951 742 71 331 66 793 4538 60.20 39.80 8.32
3 57 812 158 61 330 57 316 4014 60.69 39.31 9.28
4 50 219 934 62 583 57 875 4708 60.56 39.44 23.85
5 50 930 220 70 397 66 138 4259 60.25 39.75 21.43
6 47 779 664 58 033 54 415 3618 60.54 39.46 23.60
7 58 868 406 68 886 64 489 4397 60.09 39.91 22.36
8 64 250 174 65 248 61 364 3884 60.25 39.75 16.52
9 72 335 474 64 670 60 166 4504 60.60 39.40 16.67
10 53 344 576 99 040 92 057 6983 60.30 39.70 31.46
11 58 821 334 107 700 100 064 7636 60.35 39.65 31.87
12 61 991 178 84 379 78 540 5839 60.27 39.73 28.42
13 49 206 246 99 539 92 695 6844 60.46 39.54 34.03
14 54 672 342 98 391 91 657 6734 60.39 39.61 33.68
15 61 319 270 81 486 75 946 5540 60.36 39.64 30.89
16 56 744 190 109 658 102 075 7583 60.26 39.74 31.77
材料编号
Material number
总读长
Total reads
SNP数
SNP number
基因内SNP
Genic SNP
基因间SNP
Intergenic SNP
转换
Transition (%)
颠换
Transversion (%)
杂合型
Heterozygosity (%)
17 59 733 160 95 723 89 741 5982 60.17 39.83 33.54
18 72 158 580 81 267 75 641 5626 60.34 39.66 29.79
19 78 016 508 95 205 87 506 7699 60.50 39.50 36.17
20 53 568 218 82 079 77 412 4667 60.47 39.53 30.25
21 49 779 342 73 905 69 659 4246 60.75 39.25 30.17
22 59 151 356 89 068 82 884 6184 60.36 39.64 38.21
23 50 348 066 75 276 70 970 4306 60.23 39.77 36.31
24 51 025 424 72 978 68 695 4283 60.48 39.52 36.28
25 55 095 668 81 945 76 448 5497 60.75 39.25 31.16
26 57 676 612 87 673 82 696 4977 60.37 39.63 31.16
27 61 078 424 78 864 74 174 4690 60.74 39.26 30.43

Fig. 1

SNP type and number"

Fig. 2

SNP-unigene Nr comparison results Unigene number of this type and its proportion in all unigene are shown in parentheses."

Fig. 3

SNP-unigene COG comparison results"

Fig. 4

Allelic expression bias SNPs"

Fig. 5

Allelic biases in Sorghum bicolor×Sorghum sudanense hybrid"

Table 3

Allelic-specific expression in ten SNPs"

编号
No.
基因名称
Gene ID
位置
Position
F1 深度
Depth
染色体
Chr.
1 Sobic.001G191200 16936477 A A R 477 1
2 Sobic.001G293800 50043262 G R R 394 1
3 Sobic.002G215700 60749644 C C S 518 2
4 Sobic.002G215700 60750650 T T Y 476 2
5 Sobic.003G085700 7390162 T T W 353 3
6 Sobic.003G206800 53754265 T Y Y 361 3
7 Sobic.003G314500 64282541 T T K 492 3
8 Sobic.003G314500 64279654 C C Y 419 3
9 Sobic.004G225100 56832538 C C Y 476 4
10 Sobic.004G253000 59205755 T T Y 335 4

Fig. 6

Expression levels of each gene in three tissues of Sorghum bicolors × Sorghum sudanense hybrid and its parents"

[1] 詹秋文, 钱章强 . 高粱与苏丹草杂种优势利用的研究. 作物学报, 2004,30:73-77
doi: 10.3321/j.issn:0496-3490.2004.01.014
Zhan Q W, Qian Z Q . Research of Sorghum-Sudan grass of heterosis utilization. Acta Agron Sin, 2004,30:73-77 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.01.014
[2] Lu X P, Yun J F, Gao C P . Quantitative trait loci analysis of economically important traits inSorghum bicolor × S. sudanense hybrid. Can J Plant Sci, 2011,9:81-90
[3] Arnold M L . Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol, 2004,13:997-1007
doi: 10.1111/j.1365-294X.2004.02145.x pmid: 15078439
[4] Hegarty M J, Hiscock S J . Hybrid speciation in plants: new insights from molecular studies. New Phytol, 2004,165:411-423
doi: 10.1111/j.1469-8137.2004.01253.x pmid: 15720652
[5] Rieseberg L H . Hybrid origins of plant species. Annu Rev Ecol Evol Syst, 1997,28:359-389
doi: 10.1146/annurev.ecolsys.28.1.359
[6] Rieseberg L H, Raymond O, Rosenthal D M . Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 2003,301:1211-1216
doi: 10.1126/science.1086949
[7] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克瑟, 徐如强, 王际睿, 罗明成, 刘志勇 . 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41:197-206
Cao Y J, Xie J Z, Wu Q H, Chen Y X, Wang Z H, Zhao H, Wang X C, Zhan K S, Xu R Q, Wang J R, Luo M C, Liu Z Y . Genetic diversity of registered wheat varieties in Henan province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015,41:197-206 (in Chinese with English abstract)
[8] Birchler J A, Auger D L, Riddle N C . In search of the molecular basis of heterosis. Plant Cell, 2003,15:2236-2239
doi: 10.1105/tpc.151030 pmid: 14523245
[9] 曲存民, 卢坤, 刘水燕, 卜海东, 付福友, 王瑞, 徐新福, 李加纳 . 黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析. 作物学报, 2014,40:1914-1924
doi: 10.3724/SP.J.1006.2014.01914
Qu C M, Lu K, Liu S Y, Bu H D, Fu F Y, Wang R, Xu X F, Li J N . SNP detection and analysis of genes for flavonoid pathway in yellow-and black-seeded Brassica napus L. Acta Agron Sin, 2014,40:1914-1924 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01914
[10] Springer N M, Stupar R M . Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res, 2007,17:264-275
doi: 10.1016/j.aquatox.2007.07.004 pmid: 17255553
[11] Stupar R M, Spirnger N M . Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics, 2006,173:2199-2210
doi: 10.1534/genetics.106.060699
[12] 许家磊 . 基于甘薯徐781和徐薯18转录组测序的SNP标记开发. 中国农业科学院硕士学位论文,北京, 2015
doi: 10.7666/d.Y2787474
Xu J L . Development of SNP Markers Based on Transcriptome Sequencing of Xu 781 and Xushu 18 in Sweetpotato, Ipomoea batatas (L.) Lam. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2015 (in Chinese with English abstract)
doi: 10.7666/d.Y2787474
[13] Pastinen T . Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet, 2010,11:533-538
doi: 10.1038/nrg2815 pmid: 20567245
[14] 石璇, 王茹媛, 唐君, 李宗芸, 罗永海 . 利用简化基因组技术分析甘薯种间单核苷酸多态性. 作物学报, 2016,42:641-647
Shi X, Wang R Y, Tang J, Li Z Y, Luo Y H . Analysis of interspecific SNPs in sweetpotato using a reduced-representation genotyping technology. Acta Agron Sin, 2016,42:641-647 (in Chinese with English abstract)
[15] 刘峰, 谢玲玲, 弭宝彬, 欧阳娴, 茆振川, 邹学校, 谢丙炎 . 辣椒转录组SNP挖掘及多态性分析. 园艺学报, 2014,41:343-348
doi: 10.3969/j.issn.0513-353X.2014.02.016
Liu F, Xie L L, Mi B B, Ouyang X, Mao Z C, Zou X X, Xie B Y . SNP mining in pepper transcriptome and the polymorphism analysis. Acta Hortic Sin, 2014,41:343-348 (in Chinese with English abstract)
doi: 10.3969/j.issn.0513-353X.2014.02.016
[16] Tirosh I, Reikhav S, Levy A A . A yeast hybrid provides insight into the evolution of gene expression. Science, 2009,324:659-662
doi: 10.1126/science.1169766 pmid: 19407207
[17] Zhang X, Borevitz J O . Global analysis of allele-specific expression in Arabidopsis thaliana. Genetics, 2009,182:943-954
doi: 10.1534/genetics.109.103499 pmid: 19474198
[18] Zhai R, Feng Y, Wang H . Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics, 2013,16:19
doi: 10.1186/1471-2164-14-19 pmid: 23324257
[19] Zhang M, Li N, He W . Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J, 2016,85:424-436
doi: 10.1111/tpj.13116 pmid: 26718755
[20] 逯晓萍, 云锦凤, 肖宇红, 米福贵, 李美娜, 尹利 . 高丹草( 高粱×苏丹草)产量及其构成因素的QTL分析. 华北农学报, 2007,22(4):80-85
doi: 10.7668/hbnxb.2007.04.019
Lu X P, Yun J F, Xiao Y H, Mi F G, Li M N, Yin L . QTL localization and analysis on yield and related factors of Sorghum×Sudan grass. Acta Agric Boreali-Sin, 2007,22(4):80-85 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2007.04.019
[21] 逯晓萍, 刘丹丹, 王树彦, 米福贵, 韩平安, 吕二锁 . 高丹草遗传效应与杂种表现预测模型. 作物学报, 2014,40:466-475
Lu X P, Liu D D, Wang S Y, Mi F G, Han P A, Lyu E S . Genetic effects and heterosis prediction model of Sorghum bicolor × S. sudanense grass. Acta Agron Sin, 2014,40:466-475 (in Chinese with English abstract)
[22] 董婧, 逯晓萍, 米福贵, 王树彦, 何丽君, 韩平安, 薛春雷, 丛梦露, 李俊伟 . 高丹草杂种和亲本叶片基因差异表达研究. 植物遗传资源学报, 2016,17:738-747
doi: 10.13430/j.cnki.jpgr.2016.04.020
Dong J, Lu X P, Mi F G, Wang S Y, He L J, Han P A, Xue C L, Cong M L, Li J W . Relationship between differential gene expression patterns in leaves of the hybrids and their parents of Sorghum sudanense. J Plant Genet Resour, 2016,17:738-747 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.04.020
[23] Han P A, Lu X P, Mi F G, Dong J, Xue C L, Li J K, Han B, Zhang X Y . Proteomic analysis of heterosis in the leaves of Sorghum-Sudan grass hybrids. Acta Biochim Biophys Sin, 2016,48:161-173
doi: 10.1093/abbs/gmv126 pmid: 26792642
[24] Kim D, Pertea G, Trapnell C . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013,14:R36
doi: 10.1186/gb-2013-14-4-r36 pmid: 4053844
[25] McKenna A, Hanna M, Banks E . The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010,20:1297-1303
doi: 10.1101/gr.107524.110 pmid: 20644199
[26] Altschul S F, Madden T L, Zhang J . Gapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997,25:3389-3402
doi: 10.1093/nar/25.17.3389 pmid: 9254694
[27] Ashburner M, Ball C A, Blake J A . Gene ontology: tool for the unification of biology. Nat Genet, 2000,25:25-29
doi: 10.1038/75556
[28] Kanehisa M, Goto S, Kawashima S . The KEGG resource for deciphering the genome. Nucl Acids Res, 2004,32:277-280
doi: 10.1093/nar/gkh063
[29] Tatusov R L, Galperin M Y, Natale D A . The COG database: a tool for genome scale analysis of protein functions and evolution. Nucl Acids Res, 2000,28:33-36
doi: 10.1093/nar/28.1.33 pmid: 102395
[30] 杨侃侃 . 基于RNA-seq技术对西瓜果皮色泽差异表达基因的分析. 江西农业大学硕士学位论文,江西南昌, 2015
Yang K K . Analysis of Genes Differentially Expressed in Watermelon Rind Color Based on RNA-seq. MS Thesis of Jiangxi Agricultural University, Nanchang,China, 2015 ( in Chinese with English abstract)
[31] 杜玮南, 孙红霞, 方德福 . 单核苷酸多态性的研究进展. 中国医学科学院学报, 2000,22:392-394
Du W N, Sun H X, Fang D F . The research development of single nucleotide polymorphism. Acta Acad Med Sin, 2000,22:392-394 (in Chinese with English abstract)
[32] Bransteitter R, Pham P, Scharff M D . Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Nat Acad Sci USA, 2003,100:4102-4107
doi: 10.1073/pnas.0730835100
[33] Chodavarapu R K, Feng S, Ding B . Transcriptome and methylome interactions in rice hybrids. Proc Nat Acad Sci USA, 2012,109:12040-12045
doi: 10.1073/pnas.1209297109
[34] Morgan H D, Dean W, Coker H A . Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem, 2004,279:52353-52360
doi: 10.1074/jbc.M407695200
[35] Yebra M J, Bhagwat A S . A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry, 1995,34:14752-14757
doi: 10.1021/bi00045a016 pmid: 7578083
[36] He G M, Zhu X P, Elling A A . Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell, 2010,22:17-33
doi: 10.1105/tpc.109.072041 pmid: 20086188
[37] Guo M, Rupe M A, Zinselmeier C . Allelic variation of gene expression in maize hybrids. Plant Cell, 2004,16:1707-1716
doi: 10.1105/tpc.022087
[38] Zhuang Y, Adams K L . Extensive allelic variation in gene expression in populus F1 hybrids. Nat Genet, 2007,177:1987-1996
doi: 10.1534/genetics.107.080325
[39] 翟荣荣 . 超级稻协优9308根系杂种优势的转录组分析. 中国农业科学院博士学位论文,北京, 2013
Zhai R R . Transcriptome Analysis of Root Heterosis in a Super Hybrid Rice Xieyou 9308 by RNA-Seq. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2013 ( in Chinese with English abstract)
[40] Springer N M, Stupar R M . Allelic-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. Plant Cell, 2007,19:2391-2402
doi: 10.1105/tpc.107.052258 pmid: 17693532
[41] Wittkopp P J, Haerum B K, Clark A G . Evolutionary changes in cis and trans gene regulation. Nature, 2004,430:85-88
[42] Shen Y, Catchen J, Garcia T . Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids. Comp Biochem Physiol C Toxicol Pharmacol, 2012,155:102-108
doi: 10.1016/j.cbpc.2011.03.012 pmid: 3178741
[1] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[2] PENG Bo,ZHAO Xiao-Lei,WANG Yi,YUAN Wen-Ya,LI Chun-Hui,LI Yong-Xiang,ZHANG Deng-Feng,SHI Yun-Su,SONG Yan-Chun,WANG Tian-Yu,LI Yu. Genome-wide association studies of leaf orientation value in maize [J]. Acta Agronomica Sinica, 2020, 46(6): 819-831.
[3] WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843.
[4] XIANG Li-Yuan,XU Kai,SU Jing,WU Chao,YUAN Xiong,ZHENG Xing-Fei,DIAO Ying,HU Zhong-Li,LI Lan-Zhi. Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis [J]. Acta Agronomica Sinica, 2019, 45(9): 1319-1326.
[5] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
[6] Ying-Bin ZOU,Min HUANG. Opportunities and Challenges for Crop Production in China during the Transition Period [J]. Acta Agronomica Sinica, 2018, 44(6): 791-795.
[7] Qi-Yue WANG, Shu-Jun MENG, Ke ZHANG, Zhan-Hui ZHANG, Ji-Hua TANG, Dong DING. Investigation of Maize miRNA Involved in Developing-ear Heterosis [J]. Acta Agronomica Sinica, 2018, 44(6): 796-813.
[8] ZHANG Zheng,ZHANG Xue-Li,MO Bo-Cheng,Dai Zhi-Jun,HU Zhong-Li,LI Lan-Zhi,ZHENG Xing-Fei. Combining Ability Analysis ofAgronomic Trait in Indica × IndicaHybrid Rice [J]. Acta Agron Sin, 2017, 43(10): 1448-1457.
[9] WU Lyu, DAI Li-Qiang, DONG Qing-Song, SHI Ting-Ting,WANG Pi-Wu*. Genome-wide Association Analysis of Kernel Number per Row in Maize [J]. Acta Agron Sin, 2017, 43(10): 1559-1564.
[10] YANG Hui-Li,LIN Ya-Nan,ZHANG Huai-Sheng,WEI Xiao-Yi,DING Dong,XUE Ya-Dong. Mapping of QTLs and Heterotic Loci for Flowering Time-related Traits in Maize [J]. Acta Agron Sin, 2017, 43(05): 678-690.
[11] YU Ya-Hui,LIU Yu,LI Zhen-Yu,CHEN Guang-Hong,XU Zheng-Jin,TANG Liang,MAO Ting,XU Hai. Relationship between Indica-Japonica Index of Parents and Heterosis of Hybrid and Its Genetic Basis in Japonica Two Line Hybrid Rice [J]. Acta Agron Sin, 2016, 42(05): 648-657.
[12] HAN Ping-An,LU Xiao-Ping,MI Fu-Gui,ZHANG Rui-Xia,LI Mei-Na,XUE Chun-Lei,DONG Jing,CONG Meng-Lu. Analysis of Heterosis in Sorghum-Sudangrass Hybrids Seedlings Based on Proteomics [J]. Acta Agron Sin, 2016, 42(05): 696-705.
[13] PENG Qian,XUE Ya-Dong,ZHANG Xiang-Ge,LI Hui-Min,SUN Gao-Yang,LI Wei-Hua,XIE Hui-Ling,TANG Ji-Hua. Identification of Heterotic Loci for Yield and Ear Traits Using CSSL Test Population in Maize [J]. Acta Agron Sin, 2016, 42(04): 482-491.
[14] JIAN Hong-Ju,WEI Li-Juan,LI Jia-Na,XU Xin-Fu,CHEN Li,LIU Lie-Zhao*. Quantitative Traits Loci Analysis of Seed Glucosinolate Content in Brassica napus Using High-density SNP Map [J]. Acta Agron Sin, 2014, 40(08): 1386-1391.
[15] LU Xiao-Ping,LIU Dan-Dan,WANG Shu-Yan,MI Fu-Gui,HAN Ping-An,Lü Er-Suo. Genetic Effects and Heterosis Prediction Model of Sorghum  bicolor × S.sudanense Grass [J]. Acta Agron Sin, 2014, 40(03): 466-475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!