Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 824-835.doi: 10.3724/SP.J.1006.2018.00824

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

A Sugarcane Phosphatidylinositol Transfer Protein Gene ScSEC14 Responds to Drought and Salt Stresses

Hua-Ying MAO,Feng LIU,Wei-Hua SU,Ning HUANG,Hui LING,Xu ZHANG,Wen-Ju WANG,Cong-Na LI,Han-Chen TANG,Ya-Chun SU,You-Xiong QUE()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University / Sugarcane Research & Development Center, China Agricultural Technology System, Fuzhou 350002, Fujian, China
  • Received:2017-12-10 Accepted:2018-03-15 Online:2018-06-12 Published:2018-03-19
  • Contact: You-Xiong QUE E-mail:queyouxiong@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671752);the Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2015J06006);the China Agriculture Research System(CARS-17)

Abstract:

Sec14-like phosphatidylinositol transfer proteins are present in all eukaryotic genomes and involved in a variety of biological activities, such as metabolism of inositol phosphate, membrane transportation, polar growth, signal transduction and stress responses. The responses of Sec14-like gene to drought and salt stresses have not been reported in sugarcane. In this study, a SEC14 gene sequence was obtained in the sugarcane transcription database infected by Sporisorium scitamineum, and the full length cDNA sequence of a sugarcane SEC14 gene was obtained by RT-PCR technology and named as ScSEC14 (GenBank accession number: MG571103). Bioinformatics analysis showed a full length of 1617 bp in ScSEC14 gene containing a complete open reading frame of 1008 bp and encoding 335 amino acid residues. ScSEC14 is an unstable hydrophilic protein with no signal peptide. The secondary structure of ScSEC14 protein is mostly α-helices, with a typical SEC14 domain and a CRAL_TRIO_N domain. Phylogenetic tree analysis showed that ScSEC14 belonged to SSH (soybean Sec14 homolog group) subfamily of Sec14-like protein family. Subcellular localization experiment showed that ScSEC14 protein was mainly localized in the plasma membrane. Real-time quantitative PCR analysis showed that ScSEC14 gene was constitutively expressed in sugarcane, with the lowest expression level in skin, and the highest in leaf, which was 4.9 times of that in skin. The expression of ScSEC14 gene was up-regulated under the stresses of PEG, NaCl, CaCl2 and salicylic acid (SA). We speculate that ScSEC14 plays an important role in response to drought and salt stresses, and may be involved in the stress response signaling pathway mediated by Ca 2+ and SA.

Key words: sugarcane, Sec14-like phosphatidylinositol transfer protein, ScSEC14, drought, salt stress

Table 1

Material processing for Real-time PCR"

处理条件
Treatment condition
取样时间Sampling time (h)
取样点1 Site 1 取样点2 Site 2 取样点3 Site 3
5 mmol L-1 SA 3 6 12
25.0% PEG模拟干旱 25.0% PEG simulated drought 6 12 24
50 μmol L-1 CaCl2 3 6 12
250 mmol L-1 NaCl 6 12 24
500 mmol L-1 CuCl2 12 24 48
500 mmol L-1 CdCl2 12 24 48

Table 2

Primers used in ScSEC14 gene cloning and expression analysis"

引物
Primer
引物序列
Sequence information (5'-3')
用途
Purpose
SEC14
F: AGGAAGCGCACAAGAACAGA 基因克隆
Gene cloning
R: GGGAGTACAAGTCTCCTTGCATA
qSEC14
F: CCACGAGTCACTTCCACACT 荧光定量Real-time-qPCR
R: TGGGACCAAGAGAGTCCTGA
CUL
F: TGCTGAATGTGTTGAGCAGC 内参基因
Reference genes
R: TTGTCGCGCTCCAAGTAGTC
CAC
F: ACAACGTCAGGCAAAGCAAA 内参基因
Reference genes
R: AGATCAACTCCACCTCTGCG
G-SEC14
F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGCCACCTCCGGAAGG 载体构建
Vector construction
R: GGGGACCACTTTGTACAAGAAAGCTGGGTCTGGACCTTCGATCTGTATGCTG

Fig. 1

RT-PCR amplification of ScSEC14 gene in sugarcane M: DNA marker, D2000 bp; 1: Target fragment."

Fig. 2

Nucleotide sequence and deduced amino acid sequence of sugarcane ScSEC14 gene (* stop codon) The sequence fragment complementary to primer is highlighted in the box."

Fig. 3

Predicted hydrophobicity of the amino acid sequence of sugarcane ScSEC14 protein"

Table 3

Secondary structure prediction of sugarcane ScSEC14 protein"

二级结构类型
Secondary structure type
氨基酸残基数目
Amino acid residue number
百分比
Percentage (%)
α-螺旋Alpha-helix 145 43.28
延伸链Extended strand 52 15.52
无规则卷曲Random coil 138 41.19

Fig. 4

Predicted tertiary structure of SEC14 protein in Sugarcane officinarum, Sorghum bicolor, Zea mays, Setaria italic, and Oryza sativa"

Fig. 5

Conserved domain prediction of sugarcane ScSEC14 protein"

Fig. 6

Deduced amino acid sequence and the phylogenic tree of ScSEC14 protein A: Amino acid sequence alignment of the ScSEC14 protein with SEC14 proteins of other species; B: Phylogenetic tree analysis of ScSEC14 protein and SEC14 protein from other species; C: Domain analysis of ScSEC14 protein and SEC14 proteins of other species."

Fig. 7

Subcellular localization of ScSEC14 in Nicotiana benthamiana leaves Red arrow represents nucleus; white arrow represents plasma membrane; blue arrow represents cytoplasm."

Fig. 8

SDS-PAGE analysis of the expression of pEZY19-ScSEC14 and pEZY19(+) 1: marker; 2: empty bacteria induced for 0 h; 3: empty bacteria induced for 8 h; 4: empty vector induced for 0 h; 5: empty vector induced for 8 h; 6-12: recombinant bacteria induced for 0, 1.5, 1, 2, 4, 6, 8 h; white arrow represents the target protein induced."

Fig. 9

Relative expression of ScSEC14 gene in different tissues of sugarcane Error bars represent the standard error of each treating group (N = 3)."

Fig. 10

Relative expression of ScSEC14 in sugarcane under different exogenous stresses Error bars represent the standard error of each treating group (N = 3)."

[1] Ghosh R, Bankaitis V A . Phosphatidylinositol transfer proteins: negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. Biofactors, 2011,37:290-308
doi: 10.1002/biof.180 pmid: 21915936
[2] Muellerroeber B, Pical C . Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol, 2002,130:22-46
doi: 10.1104/pp.004770
[3] Balla T . Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev, 2013,93:1019-1137
doi: 10.1152/physrev.00028.2012
[4] Phillips S E, Vincent P, Rizzieri K E, Schaaf G, Bankaitis V A, Gaucher E A . The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol, 2006,41:21-49
doi: 10.1080/10409230500519573
[5] Aitken J F, van Heusden G P, Temkin M, Dowhan W . The gene encoding the phosphatidylinositol transfer protein is essential for cell growth. J Biol Chem, 1990,265:4711-4717
doi: 10.1016/0005-2728(90)90016-W pmid: 2407740
[6] Kearns M A, Monks D E, Fang M, Rivas M P, Courtney P D, Chen J, Prestwich G D, Theibert A B, Dewey R E, Bankaitis V A . Novel developmentally regulated phosphoinositide binding proteins from soybean whose expression bypasses the requirement for an essential phosphatidylinositol transfer protein in yeast. EMBO J, 1998,17:4004-4017
doi: 10.1093/emboj/17.14.4004 pmid: 9670016
[7] Peterman T K, Ohol Y M, Mcreynolds L J, Luna E J . Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004,136:3080-3094
doi: 10.1104/pp.104.045369 pmid: 15466235
[8] Peterman T K, Sequeira A S, Samia J A, Lunde E E . Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini ( Cucurbita pepo). J Plant Physiol, 2006,163:1150-1158
doi: 10.1016/j.jplph.2006.01.009 pmid: 16542754
[9] Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A . A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005,168:801-812
doi: 10.1083/jcb.200412074 pmid: 2171805
[10] Routt S M, Bankaitis V A . Biological functions of phosphatidylinositol transfer proteins. Biochem Cell Biol, 2004,82:254-262
doi: 10.1139/o03-089 pmid: 15052341
[11] Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y . A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012,169:1017-1022
[12] Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y . SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014,9:e98150
[13] Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240
[14] 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平 . 普通小麦 TaSEC14p-5 基因的克隆及表达分析. 农业生物技术学报, 2016,24:1129-1137
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P . Cloning and expression analysis of TaSEC14p-5 gene from wheat( Triticum aestivum). J Agric Biotechnol, 2016,24:1129-1137 (in Chinese with English abstract)
[15] Wang X, Shan X, Xue C, Wu Y, Su S, Li S, Liu H, Jiang Y, Zhang Y, Yuan Y . Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize( Zea may L.). Plant Cell Rep, 2016,35:1671-1686
doi: 10.1007/s00299-016-1980-4 pmid: 27061906
[16] Monks D E, Aghoram K, Courtney P D , De Wald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001,13:1205-1219
doi: 10.1105/tpc.13.5.1205
[17] 陈义强 . 甘蔗抗旱种质资源的筛选及斑茅杂种后代抗旱性分析 . 福建农林大学硕士学位论文, 福建福州, 2005
doi: 10.7666/d.y774985
Chen Y Q . Screening and analysis of the sugarcane drought resistant germplasm and the inte-rgeneric hybrids from crossing of Saccharum L. and E. arundinaceus Jeswiet. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2005 ( in Chinese with English abstract)
doi: 10.7666/d.y774985
[18] 黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯 . 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015,41:499-506
doi: 10.3724/SP.J.1006.2015.00499
Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K . Cloning and expression analysis of CIPK gene in sugarcane. Acta Agron Sin, 2015,41:499-506 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00499
[19] Gandonou B, Agbangla C, Ahanhanzo C, Errabii T, Idaomar M, Abrini J, Skalisenhaji N . In vitro culture techniques as a tool of sugarcane bud germination study under salt stress. Afr J Biotechnol, 2008,7:3680-3682
[20] Koehler P H, Moore P H, Jones C A, Cruz A D, Maretzki A . Response of drip-irrigated sugarcane to drought stress. Agron J, 1982,74:906-911
doi: 10.2134/agronj1982.00021962007400050018x
[21] Guo J L, Xu L P, Fang J P, Su Y C, Fu H Y, Que Y X, Xu J S . A novel dirigent protein gene with highly stem-specific expression from sugarcane, response to drought, salt and oxidative stresses. Plant Cell Rep, 2012,31:1801-1812
doi: 10.1007/s00299-012-1293-1
[22] Su Y C, Xu L P, Xue B T, Wu Q B, Guo J L, Wu L G, Que Y X . Molecular cloning and characterization of two pathogenesis- related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep, 2013,32:1503-1519
[23] Begcy K, Mariano E D, Gentile A, Lembke C G, Zingaretti S M, Souza G M, Menossi M . A novel stress induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One, 2012,7:e44697
doi: 10.1371/journal.pone.0044697 pmid: 3439409
[24] Chen Y, Ma J J, Zhang X , Y Yang Y T, Zhou D G, Yu Q, Que Y X, Xu L P, Guo J L. A novel non-specific lipid transfer protein gene from sugarcane ( NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. Sugar Tech, 2016,19:1-9
doi: 10.1007/s12355-016-0431-4
[25] 苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄 . 甘蔗Ca 2+/H +反向运转体基因的克隆与表达分析 . 作物学报, 2016,42:1074-1082
doi: 10.3724/SP.J.1006.2016.01074
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X . Cloning and expression analysis of a Ca 2+/H + antiporter gene from sugarcane . Acta Agron Sin, 2016,42:1074-1082 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01074
[26] Huang J, Kim C M, Xuan Y H, Park S J, Hai L P, Je B I, Liu J M, Kim T H, Kim B K, Han C D . OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice. Plant Mol Biol, 2013,82:39-50
doi: 10.1007/s11103-013-0033-4 pmid: 23456248
[27] Kiełbowiczmatuk A, Banachowicz E, Turskatarska A, Rey P, Rorat T . Expression and characterization of a barley phosphatidylinositol transfer protein structurally homologous to the yeast Sec14p protein. Plant Sci, 2016,246:98-111
doi: 10.1016/j.plantsci.2016.02.014 pmid: 26993240
[28] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042
[29] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) Method. Methods, 2001,25:402-408
doi: 10.1006/meth.2001.1262
[30] 罗明武, 邓柳红 . 巴西橡胶树磷脂酰肌醇转移蛋白cDNA的克隆及其序列分析. 基因组学与应用生物学, 2010,29:164-169
doi: 10.3969/gab.029.000164
Luo M W, Deng L H . Cloning and sequence analysis of phosphatidylinositol transfer protein cDNA from Hevea brasilensis. Genomics Appl Biol, 2010,29:164-169 (in Chinese with English abstract)
doi: 10.3969/gab.029.000164
[31] Domain T L S . The lipid-binding SEC 14 domain. BBA-Mol Cell Biol L, 2007,1771:719-726
doi: 10.1016/S0926-860X(00)00425-7
[32] Huang J, Ghosh R, Bankaitis V A . Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016,1861:1352-1364
doi: 10.1016/j.bbalip.2016.03.027
[33] 莫萍丽 . 拟南芥两个在花中特异表达的Sec14-like磷脂酰肌醇转移蛋白的分子生物学研究 . 厦门大学博士学位论文, 福建厦门, 2006
doi: 10.7666/d.y1345372
Mo P L . Molecular biology of two Sec14-like phosphatidylinositol transfer proteins that specifically expressed in flowers of Arabidopsis thaliana. PhD Dissertation of Xiamen University, Xiamen, Fujian, China, 2006 ( in Chinese with English abstract)
doi: 10.7666/d.y1345372
[34] 刘岩, 彭学贤 . 植物抗渗透胁迫基因工程研究进展. 中国生物工程杂志, 1997,17(2):30-37
Liu Y, Peng X X . Advances in genetic engineering of plant osmotic stress resistance. China Biotechnol, 1997,17(2):30-37 (in Chinese)
[35] Kang G, Li G, Guo T . Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiol Plant, 2014,36:2287-2297
doi: 10.1007/s11738-014-1603-z
[36] Berridge M J, Irvine R F . Inositol phosphates and cell signalling. Nature, 1989,341:197-205
doi: 10.1038/341197a0 pmid: 2550825
[37] 蔡囊, 李吉跃, 李永杰 . 土壤重金属污染下植物效应研究进展. 林业与环境科学, 2009,25(2):71-77
Cai N, Li J Y, Li Y J . Advances on the effect of heavy metal containated soils on plant. For Environ Sci, 2009,25(2):71-77 (in Chinese with English abstract)
[38] Hsuan J , Cockcroft S. The PITP family of phosphatidylinositol transfer proteins. Genome Biol, 2001, 2: REVIEWS3011
doi: 10.1186/gb-2001-2-9-reviews3011 pmid: 138965
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[5] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[6] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[7] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[8] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[9] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[10] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[11] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[14] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!