Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 931-937.doi: 10.3724/SP.J.1006.2018.00931

• RESEARCH NOTES • Previous Articles     Next Articles

Genetic Analysis of Haplotype-blocks from Wheat Founder Parent Linfen 5064

Ling QIAO1,Cheng LIU2,Xing-Wei ZHENG1,Jia-Jia ZHAO1,Bao-Hua SHANG1,Xiao-Fei MA1,Lin-Yi QIAO1,Hong-Mei GE3,Hu-Tai JI1,Jian-Jun LIU2,Jian-Cheng ZHANG1,*(),Jun ZHENG1,*()   

  1. 1 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
    2 Crop Research Institute, Shandong Academy of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture, Jinan 250100, Shandong, China
    3 Qingdao Academy of Agricultural Sciences, Qingdao 266100, Shandong, China
  • Received:2017-11-13 Accepted:2018-03-25 Online:2018-06-12 Published:2018-04-18
  • Contact: Jian-Cheng ZHANG,Jun ZHENG E-mail:zhangjc@126.com;sxnkyzj@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);the Key Scientific and Technological Innovation Platform for Main Crop Germplasm Innovation and Molecular Breeding(201605D151002);the Breeding Program of Shanxi Academy of Agricultural Sciences(17yzgc010);the Nation Key Research and Development Program of Shanxi Province(201703D211007)

Abstract:

The objective of this study was to provide essential basis for further utilization of Linfen 5064, an elite founder parent, through dissecting haplotype-blocks of Linfen 5064 transmitted to its progenies. A total of 895 alleles were detected on 395 SSR loci in Linfen 5064 and the 21 derived varieties (lines), with 1-8 alleles per locus and an average of 2.27. The average polymorphism information content (PIC) was 0.25. On 146 loci, the alleles were identical between all derived varieties (lines) and the parent, and genetic contributions of the parent were higher than 80% on 30 loci. Generally, the genetic contributions of Linfen 5064 to the first- and second-derived generations were 65.30% and 64.24%, and the contribution ratio did not decrease significantly along with the increase of generations. Sixteen haplotype-blocks were inherited completely from the parent to all derived varieties (lines) and the haplotype-blocks with contribution ratios higher than 80% were distributed on all the 21 chromosomes. In combination with the results of association analysis, almost every haplotype-block was associated with QTLs controlling important agronomic traits, indicating these chromosomal segments were strongly selected in breeding programs.

Key words: wheat, founder parent, Linfen 5064, genetic contribution, haplotype-block

Supplementary Fig. 1

Derivatives of Linfen 5064 and their pedigrees"

Supplementary Table.1

Relative information of Linfen 5064 and its derived varieties (lines)"

品种 世代 系谱 审定年份 审定类别
临汾5064 亲本 临汾5694/沙瑞克//临汾5054 1988 -
济麦19 子一代 鲁麦13/临汾 2001 山东省
济南17 子一代 临汾5064/鲁麦13 1999 山东省
临优145 子一代 临汾5064/陕优225 2003 山西省
临汾8050 子一代 临汾5064/陕7622 2007 山西省
临优2018 子一代 农科2号/临汾5064 2005 山西省
临汾138 子一代 临汾5064/烟农15 2003 山西省
农大152 子一代 陕优225/临汾5064 - 北京市
临汾139 子一代 太原136/临汾5064 2006 陕西省
晋麦83 子二代 临汾5064//烟农15/临辐8001 2007 山西省
中麦155 子二代 济麦19/鲁麦21 2012 河北省
婴泊700 子二代 太谷核不育/济麦19 2012 河北省
临优2069 子二代 临优145/5445 2005 山西省
晋麦94 子二代 临优2018航天育种 2014 山西省
鲁原502 子二代 9940168/济麦19 2011 国家黄淮冬麦区
晋麦82 子二代 临汾138/陕88316 2007 山西省
荷麦19 子二代 烟农19/临汾139 - -
新麦26 子二代 新麦18/济南17 2010 国家黄淮冬麦区
中洛08-2 子二代 偃展1号/济南17 2011 河南省
山农14 子二代 G91605/济南17 2006 山东省
山农15 子二代 济南17/济核916 2006 山东省
郑麦0943 子二代 郑97199/济麦19 2014 河南省

Table 1

HMW-GS compositions of Linfen 5064 and its derived varieties (lines)"

类别
Type
品种
Variety
亚基组成
HMW-GS
亲本 Parent 临汾5064 Linfen 5064 1, 7+8, 2+12
衍生后代
Derived varieties
or lines
济麦19 Jimai 19 1, 7+8, 2+12
济南17 Jinan 17 1, 7+8, 5+12
临优145 Linyou 145 1, 7+8, 2+12
临汾8050 Linfen 8050 1, 7+8, 2+12
临优2018 Linyou 2018 1, 7+8, 5+10
临汾138 Linfen 138 1, 7+9, 2+12
农大152 Nongda 152 1, 7+8, 2+12
临汾139 Linfen 139 null, 7+8, 2+12
晋麦83 Jinmai 83 1, 14+15, 2+12
中麦155 Zhongmai 155 null, 7+8, 5+12
婴泊700 Yingbo 700 1, 7+9, 5+10
临优2069 Linyou 2069 1, 7+8, 5+12
晋麦94 Jinmai 94 1, 7+8, 5+10
鲁原502 Luyuan 502 1, 7+8, 5+12
晋麦82 Jinmai 82 1, 7+9, 2+12
荷麦19 Hemai 19 null, 17+18, 5+10
新麦26 Xinmai 26 1, 7+9, 5+10
中洛08-2 Zhongluo 08-2 1, 14+15, 5+12
山农14 Shannong 14 1, 7+8, 5+12
山农15 Shannong 15 1, 7+8, 5+12
郑麦0943 Zhengmai 0943 1, 7+9, 5+12

Fig. 1

Cluster analysis of Linfen 5064 and its derivatives (NJ method)"

Table 2

Genomic contribution of the founder parent Linfen 5064 to their derivatives (%)"

基因组
Genome
标记/衍生世代
Marker/derived generation
染色体 Chromosome 平均
Average
1 2 3 4 5 6 7
A 标记数量 No. of markers 16 25 21 18 21 14 17 132
子一代 First generation 68.75 41.50 63.10 61.81 70.83 65.18 76.92 64.10
子二代 Second generation 71.63 42.76 65.00 58.12 67.03 69.23 73.76 63.93
B 标记数量 No. of markers 16 19 17 12 23 9 11 107
子一代 First generation 49.22 69.74 63.24 68.75 67.93 75.00 73.86 66.82
子二代 Second generation 47.11 68.82 62.44 67.95 65.55 79.49 69.93 65.89
D 标记数量 No. of markers 22 21 16 16 38 18 25 156
子一代 First generation 57.95 60.11 73.44 67.97 65.46 68.06 62.50 65.07
子二代 Second generation 58.04 60.80 75.48 61.06 65.09 61.96 56.92 62.89

Supplementary Fig.2

Haplotype-blocks shared between core parent lines and Linfen5064 in 21 linkage groups The identical haplotype-blocks between Linfen 5064 and its derivatives are shown in red. The identical haplotype-blocks between Linfen 5064 and its first derivatives are shown in green. Black line indicates the unique alleles in Linfen 5064. The vertical line on the right of chromosome represents the haplotype-blocks with the genetic contribution ratios higher than 80%"

[1] 何中虎, 夏先春, 陈新民, 庄巧生 . 中国小麦育种进展与展望. 作物学报, 2011,37:202-215
He Z H, Xia X C, Chen X M, Zhuang Q S . Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract)
[2] 魏益民, 张波, 关二旗, 张国权, 张影全, 宋哲民 . 中国冬小麦品质改良研究进展. 中国农业科学, 2013,46:4189-4196
doi: 10.3864/j.issn.0578-1752.2013.20.002
Wei Y M, Zhang B, Guan E Q, Zhang G Q, Zhang Y Q, Song Z M . Advances in study of quality property improvement of winter wheat in China. Sci Agric Sin, 2013,46:4189-4196 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.20.002
[3] 李振声 . 我国小麦育种的回顾和展望. 中国农业科技导报, 2010, ( 12):1-4
doi: 10.3969/j.issn.1008-0864.2010.02.01
Li Z S . Retrospect and prospect of wheat breeding in China. Rev China Agric Sci Technol, 2010, ( 12):1-4 (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0864.2010.02.01
[4] 陆懋曾 . 山东小麦遗传改良. 北京: 中国农业出版社, 2007. pp 297-300.
Lu M Z . Shandong Wheat Improvement. Beijing: China Agriculture Press, 2007. pp 297-300. (in Chinese)
[5] 杨丽娟, 蒋志凯, 盛坤, 李晓航, 赵宗武 . 氮肥追施时期对强筋小麦产量和面粉品质的影响. 中国农学通报, 2015,31(6):26-30
Yang L J, Jiang Z K, Sheng K, Li X H, Zhao Z W . Effect of nitrogen dressing application in different period on the yield and grain quality of strong gluten wheat. Chin Agric Sci Bull, 2015,31(6):26-30 (in Chinese with English abstract)
[6] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 534-535
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 534-535(in Chinese)
[7] 盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇 . 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009,42:1503-1511
Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y . Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin, 2009,42:1503-1511 (in Chinese with English abstract)
[8] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇 . 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012,38:954-961
Ge H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y . Genetic contribution of Lumai 14 to novel wheat varieties developed in Shangdong province. Acta Agron Sin, 2012,38:954-961 (in Chinese with English abstract)
[9] 徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会 . 小麦骨干亲本碧蚂4号系谱品种HMW-GS组成分析. 植物遗传资源学报, 2010,11:439-444
Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H . Analysis of high-molecular-weight glutenin subunit composition in pedigree cultivars of founder parent Bima 4. J Plant Genet Resour, 2010,11:439-444 (in Chinese with English abstract)
[10] 李小军, 徐鑫, 刘伟华, 李秀全, 李立会 . 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009,42:3397-3404
Li X J, Xu X, Liu W H, Li X Q, Li L H . Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009,42:3397-3404 (in Chinese with English abstract)
[11] 李红琴, 相吉山, 郭青云, 杨欣明, 李秀全, 刘伟华, 李立会 . 小麦骨干亲本阿夫及其衍生品种(系)的高分子量麦谷蛋白亚基演变分析. 植物遗传资源学报, 2009,10:37-41
Li H Q, Xiang J S, Guo Q Y, Yang X M, Li X Q, Liu W H, Li L H . Analysis of HMW-GS evolution in Funo and its derived varieties. J Plant Genet Resour, 2009,10:37-41 (in Chinese with English abstract)
[12] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇 . 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009,35:1395-1404
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y . Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009,35:1395-1404 (in Chinese with English abstract)
[13] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良 . 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013,39:827-836
Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L . Specific loci for adult-plant resistance to stripe rust in wheat founder parent Fan 6 and their genetic dissection in its derivatives. Acta Agron Sin, 2013,39:827-836 (in Chinese with English abstract)
[14] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎 . 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011,44:3919-3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H . Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011,44:3919-3929 (in Chinese with English abstract)
[15] 赵春华, 樊小莉, 王维莲, 张玮, 韩洁, 纪军, 崔法, 李俊明 . 小麦候选骨干亲本科农9204遗传构成及其传递率. 作物学报, 2015,41:574-584
doi: 10.3724/SP.J.1006.2015.00574
Zhao C H, Fan X L, Wang W L, Zhang W, Han J, Ji J, Cui F, Li J M . Genetic composition and its transmissibility analysis of wheat candidate backbone parent Kenong 9204. Acta Agron Sin, 2015,41:574-584 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00574
[16] 何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳 . 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006,39:1091-1101
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y . Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006,39:1091-1101 (in Chinese with English abstract)
[17] Laemmli U K . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970,227:680-685
doi: 10.1038/227680a0
[18] Payne P I, Lawrence G J . Catalogue of alleles for the complex gene loci, Glu-A1, Clu-B1 and Glu-D1 which code for high molecular weight subunits of gluten in hexaploid wheat. Cereal Res Commun, 1983,11:29-35
[19] Devos K M, Gale M D . The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet, 1992,84:567-572
[20] 郝晨阳, 董玉琛, 王兰芬, 游光霞, 张洪娜, 盖红梅, 贾继增, 张学勇 . 我国普通小麦核心种质的构建及遗传多样性分析. 科学通报, 2008,53:908-915
Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y . Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull, 2008,53:908-915
[21] 盖红梅 . 我国小麦主要品种的选择牵连效应分析. 中国农业科学院博士学位论文, 北京, 2008
Ge H M . Selection Sweeps in Chinese Major Cultivars of Triticum aestivum L. PhD Dissertation of Chinese Academy of Agricultural Sciences. Beijing, China, 2008 ( in Chinese with English abstract)
[22] Ge H M, You G X, Wang L F, Hao C Y, Dong Y C, Li Z S, Zhang X Y . Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2012,52:1218-1228.
doi: 10.2135/cropsci2010.12.0680
[23] Wang L F, Ge H M, Hao C Y, Dong Y C, Zhang X Y . Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One, 2012,7:e29432
doi: 10.1371/journal.pone.0029432 pmid: 3273457
[24] 全国农业技术推广服务中心. 2016年全国农作物主要品种推广情况表. 北京: 全国农业技术推广服务中心, 2017
National Agricultural Technology Extension and Service Center . Planting Area of Major Varieties of Crops in China in 2016. Beijing: National Agricultural Technology Extension and Service Center, 2017 ( in Chinese)
[25] 陈建省 . 小麦高密度遗传图谱构建和品质性状的QTL分析及分子标记开发. 山东农业大学博士学位论文. 山东泰安, 2015
Chen J S . Construction of High Density Genetic Map of Wheat (Triticum aestivum L.) and QTL Analysis for Quality and Molecular Marker Exploration . PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2015 ( in Chinese with English abstract)
[26] 刘颖, 阳文龙, 郭小丽, 瞿晓, 刘冬成, 孙家柱, 夏石头, 张爱民 . Rht12矮秆小麦GA3ox基因的克隆与表达分析. 分子植物育种, 2015,13:241-253
Liu Y, Yang W L, Guo X L, Qu X, Liu D C, Sun J Z, Xia S T, Zhang A M . Cloning and expression analysis of GA3ox genes from Rht12 dwarfing wheat. Mol Plant Breed, 2015,13:241-253 (in Chinese with English abstract)
[27] 赵振东, 刘建军, 董进英 . 冬小麦早熟性遗传分析. 莱阳农学院学报, 1989,6(3):8-16
Zhao Z D, Liu J J, Dong J Y . Genetic analysis of early maturity of winter wheat. J Laiyang Agric Coll, 1989,6(3):8-16 (in Chinese with English abstract)
[28] 朱金宝, 刘广田, 张树榛 . 基因型和环境对小麦烘烤品质的影响. 作物学报, 1995,21:679-684
Zhu J B, Liu G T, Zhang S Z . Genotype and environment effects on baking quality of wheat. Acta Agron Sin, 1995,21:679-684 (in Chinese with English abstract)
[29] Zhang W, Chao S, Manthey F, Chicaiza O, Brevis J C, Echenique V, Dubcovsky J . QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Cenet, 2008,117:1361-1377
doi: 10.1007/s00122-008-0869-1
[30] Kumar N, Kulwal P L, Balyan H S, Gupta P K . QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007,19:163-177
doi: 10.1007/s11032-006-9056-8
[31] Joppa L R, Du C, Hart G E, Hareland G A . Mapping gene(s) for grain protein in tetraploid wheat ( Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci, 1997,37:1586-1589
[32] Prasad M, Kumar N, Kulwal P L, Roder M S, Balyan H S, Dhaliwal H S, Roy J K, Gupta P K . QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003,106:659-667
doi: 10.1007/s00122-002-1114-y
[33] Cui F, Fan X L, Zhao C H, Zhang W, Chen M, Ji J, Li J M . A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014,15:57
doi: 10.1186/1471-2156-15-57 pmid: 24885313
[34] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humpphreys D G, Noll J S, Somers D J, Brown P D . Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from two Canadian wheats ( Triticum aestivum L.). Theor Appl Genet, 2006,113:753-766
doi: 10.1007/s00122-006-0346-7 pmid: 16838135
[35] 吴云鹏, 张业伦, 肖勇贵, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎 . 小麦重要品质性状的QTL定位. 中国农业科学, 2008,41:331-339
doi: 10.3864/j.issn.0578-1752.2008.02.003
Wu Y P, Zhang Y L, Xiao Y G, Yan J, Zhang Y, Zhang X K, Zhang L M, Xia X C, He Z H . QTL mapping for important quality traits in common wheat. Sci Agric Sin, 2008,41:331-339 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2008.02.003
[36] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M . Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788
doi: 10.1038/s41598-017-04028-6 pmid: 28630475
[37] Hao C Y, Wang Y Q, Chao S M, Li T, Liu H X, Wang L F, Zhang X Y . The iSelect 9K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep, 2017,7:41247
doi: 10.1038/srep41247 pmid: 28134278
[38] Ott A, Trautschold B, Sandhu D . Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS One, 2011,6:e22306
doi: 10.1371/journal.pone.0022306
[39] Zhao G Y, Zou C, Li K, Wang K, Li T B, Gao L F, Zhang X X, Wang H J, Yang Z J, Liu X, Jiang W K, Mao L, Kong X Y, Jiao Y N, Jia J Z . The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants, 2017,3:946-955
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!