Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (4): 589-600.doi: 10.3724/SP.J.1006.2019.81067

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system

ZHOU Bao-Yuan,MA Wei,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,ZHAO Ming()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture, Beijing 100081, China
  • Received:2018-09-22 Accepted:2019-01-12 Online:2019-04-12 Published:2019-02-01
  • Contact: Ming ZHAO E-mail:zhaoming@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300207);China Agriculture Research System(CARS-02-12)

Abstract:

To clarify the characteristics of the resource distribution and its use efficiency for wheat-maize cropping system with high yield potential of 20,000 kg ha -1 is essential for increasing annual yield and resource use efficiency in the Huang-Huai-Hai Plain. The relationship between high yield and distributions of radiation, accumulated temperature, and precipitation in seasons of winter wheat-summer maize cropping system was quantitatively analyzed by using the data of 45 field experiments from nine sites in Huang-Huai-Hai Plain from 2006 to 2010. The annual yield of winter wheat and summer maize in nine sites of the three provinces achieved more than 20,000 kg ha -1, with large differences among regions. Among the three provinces, the yield of wheat in Henan and Shandong and summer maize in Shandong was the highest, accounting for 16.9% and 21.5% higher than these in Hebei, respectively. The greater differences of yield among the three provinces mainly came from the distribution differences in radiation, accumulated temperature, and precipitation. The accumulated temperature and precipitation during wheat growth season in Henan and Shandong were higher than those in Hebei, when the accumulated temperature was from 1924.2°C to 2608°C, and rainfall was less than 201.1 mm; while the accumulated temperature, radiation, and precipitation during maize growth season in Shandong were higher than those in Henan and Hebei, when the radiation was 2168.5-2953.8 MJ m -2, the accumulated temperature was less than 2990.7°C, and rainfall was less than 591.3 mm. However, the relatively fixed resources distribution rate between winter wheat and summer maize was found among different experimental sites, the accumulated temperature distribution rate in wheat and maize season was 43% and 57%, respectively, the accumulated temperature ratio between two seasons was 0.7, which is the quantitative standard to dispose the reasonable resources distribution between growth seasons in winter wheat and summer maize. The results are of great significance for promoting the sustainable development of winter wheat and summer maize cropping system in the Huang-Huai-Hai Plain by using the quantitative indexes established in this study to optimize the distribution of resources between two seasons for traditional winter wheat-summer maize cropping system without any input.

Key words: winter wheat-summer maize cropping system, yield, resource distribution, resource use efficiency

Table 1

Soil conditions of different high yield fields"

地点
Experiment site
土壤质地
Soil texture
土层深度
Soil depth
(cm)
pH 全氮
Total N
(%)
碱解氮
Effective N
(mg kg-1)
速效磷
Effective P
(mg kg-1)
速效钾
Effective K
(mg kg-1)
有机质
Organic matter
(%)
山东莱州
Laizhou, Shandong
黏壤土
Clay loam
0-10 6.9 0.077 66.5 61.9 130.0 1.6
10-20 7.1 0.088 70.8 64.9 110.0 1.4
山东滕州
Tengzhou, Shandong
潮土
Moisture soil
0-10 7.1 0.076 63.8 73.9 132.1 1.6
10-20 6.9 0.089 66.0 83.8 115.3 1.2
山东诸城
Zhucheng, Shandong
黏壤土
Clay loam
0-10 6.8 0.092 76.0 34.6 120.3 1.4
10-20 7.0 0.086 84.4 36.1 105.0 1.5
山东兖州
Yanzhou, Shandong
壤土
Loam soil
0-10 6.8 0.083 74.0 31.4 110.0 1.7
10-20 7.0 0.064 58.5 24.2 70.0 1.1
河北吴桥
Wuqiao, Hebei
壤土
Loam soil
0-10 7.8 0.066 76.2 38.3 160.0 1.6
10-20 8.1 0.075 51.4 15.1 86.7 2.1
河北藁城
Gaocheng, Hebei
壤土
Loam soil
0-10 7.2 0.091 60.0 16.6 105.0 2.3
10-20 7.0 0.095 49.2 18.5 80.0 2.4
河南浚县
Xunxian, Henan
黏壤土
Clay loam
0-10 7.5 0.092 76.0 34.6 150.0 1.9
10-20 7.6 0.086 84.4 36.1 185.0 1.9
河南兰考
Lankao, Henan
沙壤土
Sandy loam
0-10 8.4 0.085 53.8 76.9 120.0 1.1
10-20 8.3 0.092 46.0 91.8 115.0 1.2
河南温县
Wenxian, Henan
潮土
Moisture soil
0-10 8.2 0.099 46.6 64.3 128.0 1.5
10-20 8.1 0.108 90.2 25.35 170.6 1.8

Table 2

Scheme for high-yielding cultivation of different fields"

地点
Experiment site
作物
Crop
品种
Variety
播种期
Sowing date
(month/day)
收获期
Harvest date
(month/day)
山东莱州
Laizhou, Shandong
小麦 Winter wheat 烟农19, 烟2415 Yannong 19, Yan 2415 10/10-10/12 6/9-6/10
玉米Summer maize 金海5号, 莱农14 Jinhai 5, Lainong 14 6/11-6/12 10/8-10/10
山东滕州
Tengzhou, Shandong
小麦Winter wheat 济麦19, 鲁麦21 Jimai 19, Lumai 21 10/6-10/8 6/8-6/10
玉米Summer maize 登海3号, 郑单958 Denghai 3, Zhengdan 958 6/9-6/11 10/5-10/7
山东诸城
Zhucheng, Shandong
小麦Winter wheat 济麦20, 山农12 Jimai 20, Shannong 12 10/5-10/7 6/6-6/8
玉米Summer maize 鲁单981, 登海9号 Ludan 981, Denghai 9 6/8-6/10 10/3-10/5
山东兖州
Yanzhou, Shandong
小麦Winter wheat 济南17, 山农664 Jinan 17, Shannong 664 10/6-10/8 6/8-6/9
玉米Summer maize 鲁单981, 农大108 Ludan 981, Nongda 108 6/10-6/12 10/5-10/8
河北吴桥
Wuqiao, Hebei
小麦Winter wheat 轮选987, 石家庄8号 Lunxuan 987, Shijiazhuang 8 10/6-10/10 6/5-6/8
玉米Summer maize 农大108, 蠡玉16 Nongda 108, Liyu 16 6/6-6/8 10/5-10/8
河北藁城
Gaocheng, Hebei
小麦Winter wheat 石新828, 石麦14 Shixin 828, Shimai 14 10/8-10/11 6/8-6/10
玉米Summer maize 郑单958, 蠡玉16 Xundan 20, Liyu 16 6/10-6/12 10/8-10/10
河南浚县
Xunxian, Henan
小麦Winter wheat 周麦22, 矮抗58 Zhoumai 22, Aikang 58 10/10-10/12 6/8-6/10
玉米Summer maize 浚单20, 浚单18 Xundan 20, Xundan 18 6/9-6/12 10/8-10/10
河南兰考
Lankao, Henan
小麦Winter wheat 兰考矮早八, 周麦16 Lankaoaizao 8, Zhoumai 16 10/13-10/16 6/9-6/10
玉米Summer maize 浚单22, 郑单958 Xundan 22, Zhengdan 958 6/9-6/12 10/10-10/12
河南温县
Wenxian, Henan
小麦Winter wheat 豫麦49-198, 周麦18 Yumai 49-198, Zhoumai 18 10/15-10/18 6/8-6/10
玉米Summer maize 浚单20, 先玉335 Xundan 20, Xianyu 335 6/10-6/12 10/12-10/15

Table 3

Locations of high crop yielding sites and corresponding meteorological stations"

试验点
Experiment site
经度
Longitude (E)
纬度
Latitude (N)
海拔
Altitude (m)
气象站点
Weather station
经度
Longitude (E)
纬度
Latitude (N)
海拔
Altitude (m)
莱州 Laizhou 119.94 37.18 48.35 龙口 Longkou 120.20 37.38 28.42
滕州 Tengzhou 117.16 35.08 69.81 滕州 Tengzhou 117.12 35.06 74.89
诸城 Zhucheng 119.40 35.59 64.77 日照 Rizhao 119.52 35.42 37.26
兖州 Yanzhou 116.40 35.41 46.10 兖州 Yanzhou 116.51 35.34 51.70
吴桥 Wuqiao 116.39 37.63 20.18 陵县 Lingxian 116.57 37.34 22.72
藁城 Gaocheng 114.84 38.02 58.75 石家庄 Shijiazhuang 114.51 38.04 84.01
浚县 Xunxian 114.55 35.68 62.79 安阳 Anyang 114.39 36.10 62.90
兰考 Lankao 114.81 34.82 66.27 开封 Kaifeng 114.30 34.80 75.56
温县 Wenxian 113.07 34.94 108.70 温县 Wenxian 113.02 34.57 106.40

Table 4

Grain yield of winter wheat-summer maize cropping system at different sites from 2006 to 2010"

试验点
Experiment site
冬小麦
Winter wheat
夏玉米
Summer maize
周年
Annual
河南
Henan
浚县Xunxian 10875.0 13678.9 24553.9
兰考Lankao 10577.3 12993.0 23570.3
温县Wenxian 10428.5 12863.3 23291.8
山东
Shandong
兖州Yanzhou 10434.3 14977.9 25412.2
滕州Tengzhou 10857.5 13983.3 24840.8
诸城Zhucheng 10256.1 12763.2 23019.3
莱州Laizhou 10018.5 15677.1 25695.6
河北
Hebei
吴桥Wuqiao 9356.5 11297.4 20653.9
藁城Gaocheng 9459.0 10605.6 20064.6
平均值
Mean
河南Henan 10626.9 a 13178.4 b 23805.3 a
山东Shandong 10391.6 a 14350.4 a 24741.9 a
河北Hebei 9407.8 b 10951.5 c 20359.3 b

Table 5

Distribution of accumulated temperature for winter wheat-summer maize cropping system"

试验点
Experiment site
冬小麦 Winter wheat 夏玉米 Summer maize 周年Annual
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
两季比
TR
河南
Henan
浚县Xunxian 2229.2 42 3062.4 58 5291.6 0.7
兰考Lankao 2452.9 43 3219.5 57 5672.4 0.8
温县Wenxian 2356.6 43 3145.2 57 5501.8 0.7
山东
Shandong
兖州Yanzhou 2233.9 43 2985.5 57 5219.4 0.7
滕州Tengzhou 2249.6 43 2999.8 57 5249.4 0.7
诸城Zhucheng 2295.4 44 2962.8 56 5258.2 0.8
莱州Laizhou 2275.6 43 2980.4 57 5256.0 0.7
河北
Hebei
吴桥Wuqiao 2122.8 43 2838.2 57 4961.0 0.7
藁城Gaocheng 2157.1 43 2883.6 57 5040.7 0.7
平均值
Mean
河南Henan 2346.2 a 43 3142.3 a 57 5488.6 a 0.7
山东Shandong 2263.6 b 43 2983.0 b 57 5245.8 b 0.7
河北Hebei 2135.0 c 43 2865.9 c 57 5000.9 c 0.7

Table 6

Distribution of radiation for winter wheat-summer maize cropping system"

试验点
Experiment site
冬小麦 Winter wheat 夏玉米 Summer maize 周年 Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
河南
Henan
浚县Xunxian 2344.0 57 1776.1 43 4120.1 1.3
兰考Lankao 2395.9 60 1616.1 40 4012.0 1.5
温县Wenxian 2573.2 61 1669.5 39 4242.7 1.5
山东
Shandong
兖州Yanzhou 2629.7 58 1880.7 42 4510.4 1.4
滕州Tengzhou 2591.2 58 1847.6 42 4438.8 1.4
诸城Zhucheng 2714.2 60 1792.4 40 4454.7 1.5
莱州Laizhou 2703.6 56 2177.2 44 4786.5 1.3
河北
Hebei
吴桥Wuqiao 2638.7 58 1852.2 42 4490.9 1.4
藁城Gaocheng 2633.9 59 1863.2 41 4497.1 1.4
平均值
Mean
河南Henan 2437.7 b 59 1687.2 b 41 4124.9 b 1.4
山东Shandong 2659.7 a 58 1924.5 a 42 4547.6 a 1.4
河北Hebei 2636.3 a 58 1857.7 a 42 4494.0 a 1.4

Table 7

Distribution of precipitation for winter wheat-summer maize cropping system"

试验点
Experiment site
冬小麦 Winter wheat 夏玉米 Summer maize 周年Annual
降水量
Pr (mm)
分配率
PDR (%)
降水量
Pr (mm)
分配率
PDR (%)
降水量
Pr (mm)
两季比
PR
河南
Henan
浚县Xunxian 154.2 29 386.6 71 540.8 0.4
兰考Lankao 161.2 29 395.1 71 556.3 0.4
温县Wenxian 167.3 30 397.8 70 565.1 0.4
试验点
Experiment site
冬小麦 Winter wheat 夏玉米 Summer maize 周年Annual
降水量
Pr (mm)
分配率
PDR (%)
降水量
Pr (mm)
分配率
PDR (%)
降水量
Pr (mm)
两季比
PR
山东
Shandong
兖州Yanzhou 172.7 23 585.6 77 758.3 0.3
滕州Tengzhou 179.2 23 593.6 77 772.8 0.3
诸城Zhucheng 238.4 27 643.4 73 881.8 0.4
莱州Laizhou 182.6 26 508.5 72 691.1 0.4
河北
Hebei
吴桥Wuqiao 119.8 25 367.8 75 487.6 0.3
藁城Gaocheng 115.2 24 365.1 76 480.3 0.3
平均值
Mean
河南Henan 160.9 b 29 393.2 b 71 554.1 b 0.4
山东Shandong 193.2 a 25 582.8 a 75 776.0 a 0.3
河北Hebei 117.5 c 24 366.5 c 76 484.0 c 0.3

Fig. 1

Relationship between wheat yield and climatic factors"

Fig. 2

Relationship between maize yield and climatic factors * Significant correlation at the 0.05 probability level. ** Significant correlation at the 0.01 probability level."

Table 8

Production efficiency of accumulated temperature, radiation, and precipitation for winter wheat and summer maize cropping system"

试验点
Experiment site
积温生产效率
Production efficiency of AT
(kg hm-2 °C-1)
光能生产效率
Production efficiency of radiation
(g MJ-1)
降水生产效率
Production efficiency of
precipitation (kg hm-2 mm-1)
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
小麦
Wheat
玉米
Maize
周年
Annual
河南
Henan
浚县Xunxian 4.88 4.47 4.64 0.46 0.77 0.60 70.5 35.4 45.4
兰考Lankao 4.31 4.04 4.16 0.44 0.80 0.59 65.6 32.9 42.4
温县Wenxian 4.43 4.09 4.23 0.40 0.77 0.56 62.3 32.3 41.2
山东
Shandong
兖州Yanzhou 4.67 5.02 4.87 0.40 0.80 0.56 60.4 25.6 33.5
滕州Tengzhou 4.83 4.66 4.73 0.42 0.76 0.56 60.6 23.6 32.1
诸城Zhucheng 4.47 4.31 4.38 0.38 0.71 0.52 43.0 19.8 26.1
莱州Laizhou 4.40 5.26 4.89 0.37 0.72 0.54 54.9 30.8 37.2
河北
Hebei
吴桥Wuqiao 4.41 3.98 4.16 0.35 0.61 0.46 78.1 30.7 42.4
藁城Gaocheng 4.39 3.68 3.98 0.36 0.57 0.45 82.1 29.0 41.8
平均值
Mean
河南Henan 4.53 a 4.19 b 4.34 b 0.44 a 0.78 a 0.59 a 66.0 b 33.5 a 43.0 a
山东Shandong 4.59 a 4.81 a 4.72 a 0.39 b 0.75 a 0.54 b 53.8 c 24.6 c 31.9 b
河北Hebei 4.41 a 3.82 c 4.07 c 0.36 c 0.59 b 0.45 c 80.1 a 29.9 b 42.1 a
[1] 黄季焜 . 新时期的中国农业发展: 机遇、挑战和战略选择. 中国科学院院刊, 2013,28:295-300.
Huang J K . China’s agricultural development in the new era: opportunities, challenges, and strategies. China Acad J, 2013,28:295-300 (in Chinese with English abstract).
[2] 于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生 . 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002,28:577-585.
Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S . Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002,28:577-585 (in Chinese with English abstract).
[3] 黄振喜, 王永军, 王空军, 李登海, 赵明, 柳京国, 董树亭, 王洪军, 王军海, 杨今胜 . 产量15,000 kg hm -2以上夏玉米灌浆期间的光合特性 . 中国农业科学, 2007,40:1898-1906.
Huang Z X, Wang Y J, Wang K J, Li D H, Zhao M, Liu J G, Dong S T, Wang H J, Wang J H, Yang J S . Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15,000 kg ha -1 . Sci Agric Sin, 2007,40:1898-1906 (in Chinese with English abstract).
[4] 陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然 . 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012,38:80-85.
Chen G P, Gao J L, Zhao M, Dong S T, Li S K, Yang Q F, Liu Y H, Wang L C, Xue J Q, Liu J G, Li C H, Wang Y H, Wang Y D, Song H X, Zhao J R . Distribution, yield structure, and key cultural techniques of maize super high yield plots in recent years. Acta Agron Sin, 2012,38:80-85 (in Chinese with English abstract).
[5] 罗琼, 王昆, 许靖波, 陈光辉 . 水稻超高产栽培技术研究进展. 作物研究, 2014,28:86-91.
Luo Q, Wang K, Xu J B, Chen G H . Research progress on super high-yielding cultivation techniques in rice. Crop Res, 2014,28:86-91 (in Chinese with English abstract).
[6] 党红凯, 李瑞奇, 李雁鸣, 张馨文, 孙亚辉 . 超高产栽培条件下冬小麦对磷的吸收、积累和分配. 植物营养与肥料学报, 2012,18:531-541.
Dang H K, Li R Q, Li Y M, Zhang X W, Sun Y H . Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions. J Plant Nutr Fert, 2012,18:531-541 (in Chinese with English abstract).
[7] 李绍长, 白萍, 吕新, 刘淑云, 董树亭 . 不同生态区及播期对玉米籽粒灌浆的影响. 作物学报, 2003,29:775-778.
Li S C, Bai P, Lyu X, Liu S Y, Dong S T . Ecological and sowing date effects on maize grain filling. Acta Agron Sin, 2003,29:775-778.
[8] Qin J Q, Impa S M, Tang Q Y, Yang S H, Yang J, Tao Y S , Jagadish K S V . Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop. Field Crops Res, 2013,148:15-23.
doi: 10.1016/j.fcr.2013.04.004
[9] Jin L B, Cui H Y, Li B, Zhang J W, Dong S T, Liu P . Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Res. 2012,134:30-35.
doi: 10.1016/j.fcr.2012.04.008
[10] Tao F, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z . Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric For Meteorol, 2006,138:82-92.
doi: 10.1016/j.agrformet.2006.03.014
[11] Wang J, Wang E L, Yang X G, Zhang F S, Yin H . Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Change, 2012,113:825-840.
doi: 10.1007/s10584-011-0385-1
[12] Meng Q F, Sun Q P, Chen X P, Cui Z L, Yue S C, Zhang F S, Römheld V . Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012,146:93-102.
doi: 10.1016/j.agee.2011.10.015
[13] Chen C, Wang E, Yu Q, Zhang Y Q . Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain. Clim Change, 2010,100:559-578.
[14] Xiong W, Matthews R, Holman I, Lin E, Xu Y L . Modelling China’s potential maize production at regional scale under climate change. Clim Change, 2007,85:433-451.
[15] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
doi: 10.1016/j.fcr.2013.01.003
[16] 王树安 . 吨良田技术——小麦-夏玉米两茬平播亩产吨粮的理论与技术体系研究.北京: 农业出版社, 1991.
Wang S A. Technology for Grain Production with a Yield of 15 Tons Per Hectare:Theory and Technology with a High Yield Output of 15 Tons Per Hectare in Winter Wheat and Summer Maize Double-Cropping System. Beijing: Agriculture Press, 1991 (in Chinese).
[17] 王树安 . 中国吨粮田建设 . 北京: 北京农业大学出版社, 1994.
Wang S A. Construction of the Grain Field with a Yield of 15 Tons Per Hectare in China. Beijing: Beijing Agricultural University Press, 1994 (in Chinese).
[18] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M . Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind Crops Prod, 2007,25:239-247.
doi: 10.1016/j.indcrop.2006.12.003
[19] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明 . 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009,35:1708-1714.
Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M . Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin, 2009,35:1708-1714 (in Chinese with English abstract).
[20] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16:243-247.
Yang X M, Zeng Y, Qiu X F, Jiang A J . The climatic change of global solar radiation over the Yellow River basin during 1960-2000. J Appl Meteor Sci, 2005,16:243-248 (in Chinese with English abstract).
[21] 郑海霞, 封志明, 游松财 . 基于GIS的甘肃省农业生产潜力研究. 地理科学进展, 2003,22:400-408.
ZHeng H X, Feng Z M, You S C . A study on potential land productivity based on GIS technology in Gansu province. Prog Geogr, 2003,22:400-408 (in Chinese with English abstract).
[22] 周宝元, 王志敏, 岳阳, 马玮, 赵明 . 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015,41:1373-1385.
Zhou B Y, Wang Z M, Yue Y, Ma W, Zhao M . Comparison of yield and resource use efficiency between wheat-maize and maize-maize cropping systems. Acta Agron Sin, 2015,41:1373-1385 (in Chinese with English abstract).
[23] Warrington I J, Kanemasu E T . Corn growth response to temperature and photoperiod: I. Seedling emergence, tassel initiation and anthesis. Agron J, 1983,75:749-754.
doi: 10.2134/agronj1983.00021962007500050008x
[24] Tollenaar M . Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during the vegetative phase. Field Crops Res, 1999,62:15-21.
doi: 10.1016/S0378-4290(98)00170-1
[25] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M . Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013,53:1693-1703.
doi: 10.2135/cropsci2012.12.0688
[26] 刘建栋, 于强, 傅抱璞 . 黄淮海地区冬小麦光温生产潜力数值模拟研究. 自然资源学报, 1999,14:169-174.
Liu J D, Yu Q, Fu B P . The numerical simulation of winter wheat photo-temperature productivity in Huang-Huai-Hai region. J Nat Resourc, 1999,14:169-174 (in Chinese with English abstract).
[27] 黄川荣, 刘洪 . 气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响. 中国农业气象, 2011,32:118-123.
Huang C R, Liu H . The effect of the climate change on potential productivity of winter wheat and summer maize in the Huang- Huai-Hai Plain. Chin J Agroneteor, 2011,32:118-123 (in Chinese with English abstract).
[28] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M . Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016,108:196-204.
doi: 10.2134/agronj2015.0196
[29] 李潮海, 苏新宏, 谢瑞芝, 周苏玫, 李登海 . 超高产栽培条件下夏玉米产量与气候生态条件关系研究. 中国农业科学, 2001,34:311-316.
Li C H, Su X H, Xie R Z, Zhou S M, Li D H . Study on relationship between grain-yield of summer corn and climatic ecological condition under super-high-yield cultivation. Sci Agric Sin, 2001,34:311-316 (in Chinese with English abstract).
[30] 潘洁, 姜东, 戴廷波, 兰涛, 曹卫星 . 不同生态环境与播种变异规律期下小麦籽粒品质的研究. 植物生态学报, 2005,29:467-473.
Pan J, Jiang D, Dai T B, Lan T, Cao W X . Variation in wheat grain quality grown under different climatic conditions with different sowing dates. Acta Phytoecol Sin, 2005,29:467-473 (in Chinese with English abstract).
[31] 刘志娟, 杨晓光, 王文峰 . 气候变化背景下中国农业气候资源变化: IV. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征. 应用生态学报, 2011,22:905-912.
Liu Z J, Yang X G, Wang W F . Changes of China agricultural climate resources under the background of climate change: IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain. Chin J Appl Ecol, 2011,22:905-912 (in Chinese with English abstract).
[32] Allison J C S, Daynard T B . Effect of change in time of flowering induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci, 1979,19:1-14.
doi: 10.2135/cropsci1979.0011183X001900010001x
[33] Dong J, Liu J, Tao F, Xu X L, Wang J B . Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Res, 2009,40:37-48.
doi: 10.3354/cr00823
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!