Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (11): 2080-2090.doi: 10.3724/SP.J.1006.2021.01089

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat

HUANG Yi-Wen1(), DAI Xu-Ran1, LIU Hong-Wei1, YANG Li1, MAI Chun-Yan2, YU Li-Qiang3, YU Guang-Jun3, ZHANG Hong-Jun1,*(), LI Hong-Jie1,*(), ZHOU Yang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory for Crop Molecular Breeding, Beijing 100081, China
    2Center for Technological Innovation of Dwarf-male-sterile Wheat Breeding (Xinxiang), Xinxiang 453731, Henan, China
    3Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian 051530, Hebei, China
  • Received:2020-11-20 Accepted:2021-03-19 Online:2021-11-12 Published:2021-04-01
  • Contact: ZHANG Hong-Jun,LI Hong-Jie,ZHOU Yang E-mail:18838916683@163.com;zhanghongjun01@caas.cn;lihongjie@caas.cn;zhouyang@caas.cn
  • Supported by:
    Science and Technology Project for Modern Seed Industry of Hebei(19226351D);National Key Research and Development Program of China(2017YFD0101000);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Abstract:

Ppo-A1 and Ppo-D1 are the major genes that control the activity of polyphenol oxidase (PPO) in wheat. It has been reported that the activity of polyphenol oxidase affects pre-harvest sprouting (PHS) resistance, but the effect of different alleles/allelic combinations at the Ppo-A1 and Ppo-D1 loci on PHS resistance remains unclear. The current study was carried out to elucidate the effects based on the germination index obtained from 248 Chinese wheat cultivars in a three-year trial in combination with genotypic data at the Ppo-A1 and Ppo-D1 loci. Analysis of variation for the Ppo-A1 and Ppo-D1 loci showed that year, Ppo-A1 locus and Ppo-A1 × Ppo-D1 interaction had significant effects on germination index. At locus Ppo-A1, germination index of cultivars carrying the allele Ppo-A1b of low PPO activity was 5.22% lower than that carrying the allele Ppo-A1a of high PPO activity on average. In contrast, the cultivars carrying the allele Ppo-D1a of low PPO activity had higher germination index than that carrying the allele Ppo-D1b of high PPO activity at locus Ppo-D1, but no significant differences between two alleles. Among the four allelic combinations, the cultivars with the Ppo-A1bPpo-D1b had the lowest germination index. The relationship between the alleles at locus Ppo-A1 and PHS resistance had been verified in the Lunxuan 13 × Jimai 20 F2 and F2:3 segregation populations. There were significantly positive correlations between PPO activity / relative expression level of Ppo-A1 gene and germination index. This study suggests that functional markers of allele Ppo-A1b can be effectively applied in marker-assisted selection for PHS resistance.

Key words: Triticum aestivum, the breeding for resistance to pre-harvest sprouting, polyphenol oxidase, Ppo-A1b allele, molecular marker-assisted selection

Table 1

Information on the functional markers for identifying different alleles at the Ppo-A1 and Ppo-D1 loci"

位点
Locus
标记
Marker
引物序列
Primer sequence (5′-3′)
等位基因
Allele
扩增片段
Amplified fragment (bp)
退火温度
Annealing temperature (℃)
参考文献
Reference
Ppo-A1 PPO18 F: AACTGCTGGCTCTTCTTCCCA Ppo-A1a 685 60 [25]
R: AAGAAGTTGCCCATGTCCGC Ppo-A1b 876
Ppo-D1 PPO16 F: TGCTGACCGACCTTGACTCC Ppo-D1a 713 60 [26]
R: CTCGTCACCGTCACCCGTAT
PPO29 F: TGAAGCTGCCGGTCATCTAC Ppo-D1b 490
R: AAGTTGCCCATGTCCTCGCC

Table 2

Primers for qRT-PCR"

基因
Gene
上游引物序列
Forward primer sequence (5′-3′)
下游引物序列
Reverse primer sequence (5′-3′)
Ppo-A1 GCAACTGCCAAACGCCCGAGC CAGCACGAAGTCGGTGATGCC
Ppo-D1 CCGGACCTTGAGATCCAGGTG. GAAGGTGTCGTCGCCGATGAG
Actin GTTTCCTGGAATTGCTGATCGCAT CATTATTTCATACAGCAGGCAAGC

Table 3

Analysis of variance of germination index of 248 wheat cultivars from 2018 to 2020"

变异来源Source of variation 自由度DF 均方Mean square
基因型 Genotypes (G) 247 0.26**
年份 Years (Y) 2 10.91**
基因型 × 年份互作G × Y interaction 494 0.03**
重复 Replications 2 0.04
误差 Error 1486 0.01

Fig. 1

Correlation analysis of germination index between years in the Chinese wheat cultivars examined **Significance at P < 0.01."

Table 4

Mean germination index, standard deviation (SD), variation range, and coefficient of variation from 248 wheat cultivars and Lunxuan 13 × Jimai 20 population (%)"

品种/群体
Cultivar/population
年份
Year
均值±标准差
Mean ± SD
变幅
Range
变异系数
Coefficient of variation
248份小麦品种 2018 47.46 ± 19.48 5.33-93.71 40.97
248 wheat cultivars 2019 58.39 ± 17.61 17.14-92.19 30.10
2020 34.21 ± 19.05 2.95-88.71 55.59
平均 Mean 46.70 ± 17.03 11.55-88.70 36.41
轮选13 × 济麦20群体 2019 (F2) 59.49 ± 16.59 18.10-90.76 27.88
Lunxuan 13 × Jimai 20 population 2020 (F2:3) 46.94 ± 13.22 19.14-79.53 28.18

Fig. 2

Comparison of pre-harvest sprouting resistance between parents Lunxuan 13 (A) and Jimai 20 (B) after germination for three days"

Fig. 3

Detection of alleles at the Ppo-A1 and Ppo-D1 loci in selected wheat cultivars using markers PPO18, PPO16, and PPO29 M: marker DNA ladder 2000; 1: Jing 411; 2: Luohan 7; 3: Shannong 20; 4: Shi 4185; 5: Shimai 12; 6: Xinmai 20; 7: Kaimai 20; 8: Xunong 5; 9: Huaimai 20; 10: Xingmai 13."

Table 5

Analysis of variance of germination index for 248 wheat cultivars at the Ppo-A1 and Ppo-D1 loci over three years"

变异来源
Source of variation
自由度
DF
均方
Mean square
年份 Years (Y) 2 3.543**
Ppo-A1 1 0.512**
Ppo-D1 1 0.009
Ppo-A1 × Ppo-D1互作Ppo-A1 × Ppo-D1 interaction 1 0.173*
Ppo-A1 × 年份互作 Ppo-A1 × Y interaction 2 0.010
Ppo-D1 × 年份互作 Ppo-D1 × Y interaction 2 0.001
Ppo-A1 × Ppo-D1 × 年份互作 Ppo-A1 × Ppo-D1 × Y interaction 2 0.010
误差 Error 732 0.035

Fig. 4

Comparison of germination index between alleles at the Ppo-A1 (A) and Ppo-D1 (B) loci in the wheat cultivars examined ** represents significant at P < 0.01. Dot: outlier."

Fig. 5

Comparison of germination index among allelic combinations at the Ppo-A1 and Ppo-D1 loci in the wheat cultivars examined Different letters indicate significance at P < 0.01 in germination index between alleles. Dot: outlier."

Fig. 6

Comparison of germination index among genotypes at the Ppo-A1 locus in the Lunxuan 13 × Jimai 20 population Different letters indicate significant difference at P < 0.01 in germination index between alleles."

Fig. 7

Comparison of PPO activity among wheat cultivars (A)/F2:3 lines (B) in the Lunxuan 13 × Jimai 20 population with different genotypes Different letters indicate significant difference at P < 0.01 in germination index (GI) / PPO activity among genotypes."

Fig. 8

Quantitative real time-PCR expression analysis of Ppo-A1 and Ppo-D1 genes in wheat cultivars (A and B) and F2:3 lines (C) in the Lunxuan 13 × Jimai 20 population Different letters indicate significant difference at P < 0.01 in germination index (GI) / relative expression level among genotypes."

[1] Li H J, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances. Crop J, 2019, 7: 718-729.
doi: 10.1016/j.cj.2019.09.003
[2] Ali A, Cao J J, Jiang H, Chang C, Zhang H P, Sheikh S W, Shah L, Ma C X. Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting. Agronomy, 2019, 9: 117.
doi: 10.3390/agronomy9030117
[3] Depauw R M, Knox R E, Singh A K, Fox S L, Humphreys D G, Hucl P. Developing standardized methods for breeding pre-harvest sprouting resistant wheat, challenges and successes in Canadian wheat. Euphytica, 2012, 188: 7-14.
doi: 10.1007/s10681-011-0611-y
[4] Liu C X, Ding F, Hao F H, Yu M, Lei H H, Wu X Y, Zhao Z X, Guo H X, Yin J, Wang Y L. Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat. Sci Rep, 2016, 6: 20593.
doi: 10.1038/srep20593
[5] Zhu Y L, Wang S X, Wei W X, Xie H Y, Liu K, Zhang C, Wu Z Y, Jiang H, Cao J J, Zhao L X. Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor Appl Genet, 2019, 132: 2947-2963.
doi: 10.1007/s00122-019-03398-x
[6] Liu Y J, Liu Y X, Zhou Y, Wight C, Pu Z, Qi P F, Jiang Q T, Deng M, Wang Z X, Wei Y M. Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified in Triticum spelta. Euphytica, 2017, 213: 19.
doi: 10.1007/s10681-016-1796-x
[7] Shao M Q, Bai G H, Rife T W, Jesse P, Lin M, Liu S B, Cai H, Tadele K, Allan F, Harold T. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. Theor Appl Genet, 2018, 131: 1683-1697.
doi: 10.1007/s00122-018-3107-5
[8] Vetch J M, Stougaard R N, Martin J M, Giroux M J. Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Sci, 2019, 281: 180-185.
doi: 10.1016/j.plantsci.2019.01.004
[9] Zhang Y J, Xia X C, He Z H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet, 2017, 130: 81-89.
doi: 10.1007/s00122-016-2793-0
[10] Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 2011, 23: 3215-3229.
doi: 10.1105/tpc.111.088492
[11] Himi E, Noda K. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica, 2005, 143: 239-242.
doi: 10.1007/s10681-005-7854-4
[12] Yang G H, Zhao X Q, Li B, Liu J Z, Li Z S. Molecular cloning and characterization of a DFR from developing seeds of blue-grained wheat in anthocyanin biosynthetic pathway. Acta Bot Sin, 2003, 45: 1329-1338.
[13] Bailey P C, Mckibbin R S, Lenton J R, Holdsworth M J, Flintham J E, Gale M D. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet, 1999, 98: 281-284.
doi: 10.1007/s001220051069
[14] Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol, 2016, 26: 782-787.
doi: 10.1016/j.cub.2016.01.063
[15] Lin M, Liu S B, Zhang G R, Bai G H. Effects of TaPHS1 and TaMKK3-A genes on wheat pre-harvest sprouting resistance. Agronomy, 2018, 8: 210.
doi: 10.3390/agronomy8100210
[16] 吴玉良, 杨煜峰. 无原花色素大麦突变体穗发芽的研究. 浙江农业大学学报, 1996, 22: 647-650.
Wu Y L, Yang Y F. Study on pre-harvest sprouting of barley mutants without proanthocyanidins. J Zhejiang Agric Univ, 1996, 22: 647-650 (in Chinese with English abstract).
[17] Weidner S, Krupa U, Amarowicz R, Karamac M, Abe S. Phenolic compounds in embryos of triticale caryopses at different stages of development and maturation in normal environment and after dehydration treatment. Euphytica, 2002, 126: 115-122.
doi: 10.1023/A:1019607302792
[18] 魏海蓉, 高东升, 李宪利. 植物生长调节剂对甜樱桃休眠的调控及花芽酚类物质含量的影响. 园艺学报, 2005, 32: 17-21.
Wei H R, Gao D S, Li X L. Effects of plant growth regulators on the content of phenolics in sweet cherry dormant flower buds and dormancy. Acta Hortic Sin, 2005, 32: 17-21 (in Chinese with English abstract).
[19] 宋亮, 潘开文, 王进闯, 马玉红. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响. 生态学报, 2006, 10: 3393-3403.
Song L, Pan K W, Wang J C, Ma Y H. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa. Acta Ecol Sin, 2006, 10: 3393-3403 (in Chinese with English abstract).
[20] Esmaeili N, Ebrahimzadeh H, Abdi K. Correlation between polyphenol oxidase (PPO) activity and total phenolic contents in Crocus sativus L. Corms during dormancy and sprouting stages. Pharmacogn Mag, 2017, 13: S519-S524.
[21] Demeke T, Morris C F, Campbell K G, King G E, Anderson J A, Chang H G. Wheat polyphenol oxidase: distribution and genetic mapping in three inbred line populations. Crop Sci, 2001, 41: 1750-1757.
doi: 10.2135/cropsci2001.1750
[22] Baik B, Czuchajowska Z, Pomeranz Y. Comparison of polyphenol oxidase activities in wheats and flours from Australian and US cultivars. J Cereal Sci, 1994, 19: 291-296.
doi: 10.1006/jcrs.1994.1036
[23] 王宝凤, 付金锋, 董立峰. 多酚氧化酶活性与小麦抗穗发芽的关系及抗穗发芽新品种秦麦3号的选育. 麦类作物学报, 2006, 29: 97-100.
Wang B F, Fu J F, Dong L F. The Relationship between activity of polyphenol oxidase and resistance to pre-harvest sprouting in wheat and breeding of Qinmai 3 with high resistance to PHS. J Triticeae Crops, 2006, 29: 97-100 (in Chinese with English abstract).
[24] 王宝凤, 杨雪, 付金锋, 董立峰, 马理. 低酚酶活性选择对小麦穗发芽的影响. 核农学报, 2015, 29: 899-907.
Wang F B, Yang X, Fu J F, Dong L F, Ma L. Effects of consecutive selection for low polyphenol oxidase activity on wheat pre-harvest sprouting. J Nucl Agric Sci, 2015, 29: 899-907 (in Chinese with English abstract).
[25] Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed, 2005, 16: 209-218.
doi: 10.1007/s11032-005-6618-0
[26] He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet, 2007, 115: 47-58.
pmid: 17426955
[27] 买春艳, 李洪杰, 刘宏伟, 杨丽, 于立强, 周阳, 张宏军. 北方冬麦区小麦品种产量相关性状和幼穗分化特点研究. 麦类作物学报, 2018, 7: 773-781.
Mai C Y, Li H J, Liu H W, Yang L, Yu L Q, Zhou Y, Zhang H J. Characterization of yield related traits and inflorescence differentiation in representative wheat cultivars from the northern China winter wheat region. J Triticeae Crops, 2018, 7: 773-781 (in Chinese with English abstract).
[28] Martinez S A, Godoy J, Huang M, Zhang Z W, Carter A H, Garland Campbell K A, Steber C M. Genome-wide association mapping for tolerance to pre-harvest sprouting and low falling numbers in wheat. Front Plant Sci, 2018, 9: 141.
doi: 10.3389/fpls.2018.00141 pmid: 29491876
[29] Anderson J V, Morris C F. An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity. Crop Sci, 2001, 41: 1697-1705.
doi: 10.2135/cropsci2001.1697
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
pmid: 11846609
[31] Jin H, Wen W E, Liu J D, Zhai S N, Zhang Y, Yan J, Liu X Y, Xia X C, He Z H. Genome-wide QTL mapping for wheat processing quality parameters in a Gaocheng 8901/Zhoumai 16 recombinant inbred line population. Front Plant Sci, 2016, 7: 1032.
[32] 张立平, 葛秀秀, 何中虎, 王德森, 闫俊, 夏先春, Sutherland M W. 普通小麦多酚氧化酶活性的QTL分析. 作物学报, 2005, 31: 7-10.
Zhang L P, Ge X X, He Z H, Wang D S, Yan J, Xia X C, Sutherland M W. Mapping QTLs for polyphenol oxidase activity in a DH population from common wheat. Acta Agron Sin, 2005, 31: 7-10 (in Chinese with English abstract).
[33] Nilthong S, Graybosch R A, Baenziger P S. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds. Theor Appl Genet, 2012, 125: 1705-1715.
doi: 10.1007/s00122-012-1947-y
[34] 张晓, 高德荣, 李曼, 刘大同, 吴素兰, 江伟, 吕国锋. 小麦面粉和鲜面片色泽及Psy-A1Ppo-A1等位变异检测. 麦类作物学报, 2019, 39: 415-422.
Zhang X, Gao D R, Li M, Liu D T, Wu S L, Jiang W, Lyu G F. Color of flour and fresh dough sheet of wheat varieties and detection of allelic variations for genes Psy-A1 and Ppo-A1. J Triticeae Crops, 2019, 39: 415-422 (in Chinese with English abstract).
[35] Kato K, Maruyama-Funatsuki W, Yanaka M, Ban Y, Takata K. Improving preharvest sprouting resistance in durum wheat with bread wheat genes. Breed Sci, 2017, 67: 466-471.
doi: 10.1270/jsbbs.17042
[1] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[2] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[3] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[4] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[5] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[6] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[7] HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16 [J]. Acta Agronomica Sinica, 2020, 46(02): 157-165.
[8] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[9] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[10] Lin-Sheng WANG,Ya-Li ZHANG,Guang-Hui NAN. Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS [J]. Acta Agronomica Sinica, 2018, 44(10): 1442-1447.
[11] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[12] De-Hui ZHAO, Yong Zhang, De-Sen WANG, Ling HUANG, Xin-Min CHEN, Yong-Gui XIAO, Jun YAN, Yan ZHANG, Zhong-Hu HE. Pan Bread and Steamed Bread Qualities of Novel-Released Cultivars in Northern Winter Wheat Region of China [J]. Acta Agronomica Sinica, 2018, 44(05): 697-705.
[13] Hong-Jun ZHANG, Zhen-Qi SU, Gui-Hua BAI, Xu ZHANG, Hong-Xiang MA, Teng LI, Yun DENG, Chun-Yan MAI, Li-Qiang YU, Hong-Wei LIU, Li YANG, Hong-Jie LI, Yang ZHOU. Improvement of Resistance of Wheat Cultivars to Fusarium Head Blight in the Yellow-Huai Rivers Valley Winter Wheat Zone with Functional Marker Selection of Fhb1 Gene [J]. Acta Agronomica Sinica, 2018, 44(04): 505-511.
[14] HU E-E, ZHANG Na, LI Lin-Mao, YANG Wen-Xiang, LIU Da-Qun. Analysis of Wheat Leaf Rust Resistance Genes in 14 Wheat Cultivars or Lines [J]. Acta Agron Sin, 2011, 37(12): 2158-2166.
[15] ZHANG Hong-Gen, HU Zuo-Peng, LI Peng, LI Bo, LIU Chao, ZHU Bang-Hui, XU Ji-Fen, CHOU Zhong-Yi, TANG Shu-Zhu, LIANG Guo-Hua, GU Ming-Hong. Improving the Resistance of Wuyunjing 8 to Rice Stripe Virus via Molecular Marker-Assisted Selection [J]. Acta Agron Sin, 2011, 37(05): 745-754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!