Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1351-1359.doi: 10.3724/SP.J.1006.2021.03051

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.)

LI Jing, WANG Hong-Zhang, LIU Peng*(), ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao   

  1. College of Agriculture, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2020-08-29 Accepted:2020-12-01 Online:2021-07-12 Published:2021-01-04
  • Contact: LIU Peng E-mail:liup@sdau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300106);This study was supported by the National Key Research and Development Program of China(2018YFD0300603);the National Natural Science Foundation of China(31771713);the National Natural Science Foundation of China(3207150188);the Shandong Province Key Agricultural Project for Application Technology Innovation(SDAIT-02-08)

Abstract:

Photosynthesis plays an important role in crop growth and yield formation. Different cultivation patterns can significantly affect the photosynthetic performance of leaves at post-flowering stage in summer maize. In order to explore the effects of different cultivation modes on the photosynthetic performance of summer maize leaves at post-flowering stage, field experiments were carried out with Denghai 605 maize hybrid variety as experimental material from 2018 to 2019 in Tai’an, Shandong, China. With the local farmer management mode (FP) as the control, the super-high-yield cultivation mode (SH) and high-yield and high-efficiency cultivation mode (HH) by comprehensively optimizing the planting density, fertilizer planting and management mode were set in this study. Leaf area index, chlorophyll content, gas exchange parameters, rapid chlorophyll fluorescence induction kinetic curve (OJIP) were evaluated, which indicated significant differences in biomass of different cultivation modes at maturity stage. Compared with FP, the biomass of SH and HH increased by 27.77% and 7.43%, respectively, and the population biomass at post-flowering stage of HH increased significantly as well. Besides, the photosynthetic rate all declined in different cultivation modes, reaching the highest degree of decline on the 30th day at post-flowering stage (R1+30 d). In contrast with FP, the net photosynthetic rate (Pn) of SH and HH increased at post-flowering stage stage (R1) by 21.63% and 12.96%, respectively, and on the 30th day (R1+30 d) at post-flowering stage by 35.37% and 12.37%, respectively, which could maintain a higher level of photosynthetic capacity. In addition, these results revealed that the differences of net photosynthetic rate among the different cultivation modes were caused by non-stomatal factors. The stomatal conductance (Gs) of SH and HH was increased at the silking stage by 18.36%, 16.66%, 26.16%, and 10.74%, respectively, and while on the 30th day at post-flowering stage intercellular carbon dioxide (Ci) declined by 12.85%, 7.34%, 14.08%, and 9.75%, respectively. Compared with FP, Wk and Vj of SH and HH significantly decreased, indicating that SH and HH apparently improved the performances of both electron donor and acceptor sides of electron transport chain in PSII reaction center, the quantum yield of electron transfer (φE0), the electron transfer ability as well as the reaction center activities of PSII and the coordination between PSI and PSII. In conclusion, SH and HH effectively improved the photosystems performance, increased the net photosynthetic rate, and prolonged duration of high photosynthesis rate, resulting in the increase of the population biomass and high yield.

Key words: summer maize, cultivation modes, photosynthetic performance, chlorophyll fluorescence parameters

Table 1

Nutrient content of 0-20 cm soil layer in experimental field before sowing date"

年份
Year
有机质
Soil organic matter
(g kg-1)
速效氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2018 9.22 70.54 35.75 137.57
2019 9.51 72.54 32.25 135.35

Fig. 1

Average daily temperature, effective photosynthetic radiation, and daily rainfall during corn growth period"

Table 2

Density and fertilizer management"

处理
Treatment
种植密度
Planting density
(plant hm-2)
行距
Row spacing (cm)
肥料类型
Fertilizer
肥料用量
Dosage
(kg hm-2)
比例Proportion
播种
Seeding
大口
V12
开花
VT
乳熟
R3
SH 82,500 80+40 有机肥
Organic fertilizer
7500 100%
N 540 30% PU+10% U 30% U 20% U 10% U
P2O5 180 100%
K2O 360 75% 25%
HH 82,500 60+60 有机肥
Organic fertilizer
7500 100%
N 225 30% PU+10% U 30% U 20% U 10% U
P2O5 150 100%
K2O 300 75% 25%
FP 67,500 60+60 种肥同播, 复合肥 (N-P2O5-K2O=14-16-15) 750 kg hm-2
Compound fertilizer (N-P2O5-K2O=14-16-15) 750 kg hm-2

Fig. 2

Effects of cultivation mode on biomass in summer maize SH: super high yield mode; HH: high-yield and efficient mode; FP: farmer management mode; R1: silking stage; R6: maturity stage. Bars superscripted by different lowercase letters are significantly different between the treatments at P < 0.05."

Fig. 3

Effects of cultivation modes on gas exchange parameters of summer maize leaves at post-flowering stage SH: super high yield mode; HH: high-yield and efficient mode; FP: farmer management mode; R1: silking stage; R1+15: 15 days after silking stage; R1+30: 30 days after silking stage; R1+45: 45 days after silking stage. * and ** indicate significant differences at P < 0.05 and P < 0.01, respectively. Different lowercase letters indicate significant difference at P < 0.05 among the treatments."

Table 3

Differences of specific leaf weight, leaf area index and chlorophyll content at post-flowering stage under different cultivation modes in summer maize"

年份
Years
处理
Treatment
比叶重
Specific leaf weight
(mg cm-2)
叶面积指数
Leaf area index
叶绿素a含量
Chlorophyll a
(mg dm-2)
叶绿素b含量
Chlorophyll b
(mg dm-2)
叶绿素a/b
Chlorophyll a/b
R1 R1+30 d R1 R1+30 d R1 R1+30 d R1 R1+30 d R1 R1+30 d
2018 SH 4.75 a 4.38 a 6.2 a 5.3 a 5.53 a 5.04 a 2.70 a 2.31 a 2.04 a 2.16 a
HH 4.63 ab 4.34 ab 5.4 b 4.8 b 5.21 b 4.77 b 2.66 a 2.26 ab 1.95 b 2.11 ab
FP 4.53 b 4.11 b 4.8 c 4.5 c 5.06 b 4.59 c 2.63 a 2.24 b 1.92 b 2.05 b
2019 SH 4.69 a 4.39 a 7.1 a 6.6 a 5.42 a 5.01 a 2.71 a 2.35 a 1.99 a 2.13 a
HH 4.55 ab 4.30 a 6.1 b 5.5 b 5.18 b 4.71 b 2.67 a 2.25 ab 1.94 b 2.09 ab
FP 4.38 b 4.16 ab 5.0 c 4.6 c 5.04 c 4.52 c 2.66 a 2.21 b 1.90 b 2.04 b

Fig. 4

Effects of cultivation modes on reaction center performance of photosystem II in summer maize leaves Treatments and abbreviations are the same as those given in Fig. 3. Bars superscripted by different lowercase letters are significantly different between the treatments at P < 0.05."

Fig. 5

Effects of cultivation modes on Wk and Vj in summer maize Treatments and abbreviations are the same as those given in Fig. 3. Bars superscripted by different lowercase letters are significantly different between the treatments at P < 0.05."

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017,50:1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J K, Yang Q F, Wang Z M. Research progress and prospect of corn cultivation in China. Sci Agric Sin, 2017,50:1941-1959 (in Chinese with English abstract).
[2] 陈印军, 易小燕, 方琳娜, 杨瑞珍. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016,49:1117-1131.
Chen Y J, Yi X Y, Fang L N, Yang R Z. Analysis of cultivated land and grain production potential in China. Sci Agric Sin, 2016,49:1117-1131 (in Chinese with English abstract).
[3] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15,000 kg hm -2)及其产量构成因子的影响 . 中国农业科学, 2012,45:3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012,45:3437-3445 (in Chinese with English abstract).
[4] 史建国, 崔海岩, 赵斌, 董树亭, 刘鹏, 张吉旺. 花粒期光照对夏玉米产量和籽粒灌浆特性的影响. 中国农业科学, 2013,46:4427-4434.
Shi J G, Cui H Y, Zhao B, Dong S T, Liu P, Zhang J W. Effect of light on yield and characteristics of grain-filling of summer maize from flowering to maturity. Sci Agric Sin, 2013,46:4427-4434 (in Chinese with English abstract).
[5] 张子山, 杨程, 高辉远, 李耕, 刘鹏. 保绿玉米与早衰玉米叶片衰老过程中叶绿素降解与光合作用光化学活性的关系. 中国农业科学, 2012,45:4794-4800.
Zhang Z S, Yang C, Gao H Y, Li G, Liu P. Relationship between photochemistry activity and decrease in chlorophyll content during senescence in leaves of stay green and quick-leaf-senescence inbred line of maize. Sci Agric Sin, 2012,45:4794-4800 (in Chinese with English abstract).
[6] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017,50:2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017,50:2463-2475 (in Chinese with English abstract).
[7] Baker N R. A possible role for photosystem II in environmental perturbations of photosynthesis. Physiol Plant, 2010,81:563-570.
[8] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019,45:1868-1879.
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019,45:1868-1879 (in Chinese with English abstract).
[9] 肖继兵, 刘志, 孔凡信, 辛宗绪, 吴宏生. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018,51:4264-4276.
Xiao J B, Liu Z, Kong F X, Xin Z X, Wu H S. Effects of planting pattern and density on population structure and yield of sorghum. Sci Agric Sin, 2018,51:4264-4276 (in Chinese with English abstract).
[10] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50:1031-1046.
Wang Y H, Huang Y, Xin M H, Yuan S S, Kang G Z, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Sci Agric Sin, 2017,50:1031-1046 (in Chinese with English abstract).
[11] Li T, Liu Y J, Shi L, Jiang C D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015,90:86-94.
[12] 张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝. 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014,50:488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z Z. Proteomics analysis of tobacco leaves during senescence. Plant Physiol J, 2014,50:488-500 (in Chinese with English abstract).
[13] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1233 (in Chinese with English abstract).
[14] Wu Y S, Yang F, Gong W Z, Shoaib A, Fan Y F, Wu X L, Yong T W, Liu W G, Shu K, Liu J, Du J B, Yang W Y. Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. J Integr Agric, 2017,16:1331-1340.
[15] 郑宾, 赵伟, 徐铮, 高大鹏, 姜媛媛, 刘鹏, 李增嘉, 李耕, 宁堂原. 不同耕作方式与氮肥类型对夏玉米光合性能的影响. 作物学报, 2017,43:925-934.
Zheng B, Zhao W, Xu Z, Gao D P, Jiang Y Y, Liu P, Li Z J, Li G, Ning T Y. Effects of tillage methods and nitrogen fertilizer types on photosynthetic performance of summer maize. Acta Agron Sin, 2017,43:925-934 (in Chinese with English abstract).
[16] 赵伟, 甄天悦, 张子山, 徐铮, 高大鹏, 丁聪, 刘鹏, 李耕, 宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量. 作物学报, 2020,46:249-258.
Zhao W, Zhen T Y, Zhang Z S, Xu Z, Gao D P, Ding C, Liu P, Li G, Ning T Y. Increasing phosphate fertilizer application to improve photosynthetic capacity and yield of summer soybean in weak light environment. Acta Agron Sin, 2020,46:249-258 (in Chinese with English abstract).
[17] 王菲, 曹翠玲. 磷水平对不同磷效率小麦叶绿素荧光参数的影响. 植物营养与肥料学报, 2010,16:758-762.
Wang F, Cao C L. Effects of phosphorus levels on chlorophyll fluorescence parameters of wheat ( Triticum aestivum L.) with different phosphorus efficiencies. J Plant Nutr Fert, 2010,16:758-762 (in Chinese with English abstract).
[18] 焦念元, 杨萌珂, 宁堂原, 尹飞, 徐国伟, 付国占, 李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响. 植物生态学报, 2013,37:1010-1017.
Jiao N Y, Yang M K, Ning T Y, Yin F, Xu G W, Fu G Z, Li Y J. Effects of maize-peanut intercropping and phosphate fertilizer on photosynthetic characteristics and yield of intercropped peanut plants. Chin J Plant Ecol, 2013,37:1010-1017 (in Chinese with English abstract).
[19] Arnon D I. Copper enzymes in isolated chloroplasts, polyphenoloxidase in beta vulgaris. Plant Physiol, 1949,24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[20] Schansker G, Srivastava A, Strasser R J. Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol, 2003,30:785-796.
pmid: 32689062
[21] 张浩, 郑云普, 叶嘉, 高伟, 乔雅君, 戴川景, 赵雨欣, 石少婕. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019,30:923-930.
Zhang H, Zheng Y P, Ye J, Gao W, Qiao Y J, Dai C J, Zhao Y X, Shi S J. Effects of exogenous calcium ions on stomata characteristics, photosynthesis and biomass of maize under salt stress. Chin J Appl Ecol, 2019,30:923-930 (in Chinese with English abstract).
[22] 高冠龙, 冯起, 张小由, 司建华, 鱼腾飞. 植物叶片光合作用的气孔与非气孔限制研究综述. 干旱区研究, 2018,35:929-937.
Gao G L, Feng Q, Zhang X Y, Si J H, Yu T F. A review of research on stomatal and non-stomata restriction of plant leaf photosynthesis. Arid Zone Res, 2018,35:929-937 (in Chinese with English abstract).
[23] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982,33:317-345.
[24] 顾骏飞, 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016,42:551-560.
Gu J F, Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Yang J C. Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice. Acta Agron Sin, 2016,42:551-560 (in Chinese with English abstract).
[25] 杜祥备, 王家宝, 刘小平, 夏家平, 韩杨. 减氮运筹对甘薯光合作用和叶绿素荧光特性的影响. 应用生态学报, 2019,30:1253-1260.
Du X B, Wang J B, Liu X P, Xia J P, Han Y. Effects of nitrogen fertilizer reduction management on photosynthesis and chlorophyll fluorescence characteristics of sweetpotato. Chin J Appl Ecol, 2019,30:1253-1260 (in Chinese with English abstract).
[26] Gitelson A A, Peng Y, Arkebauer T J. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: implications for remote sensing of primary production. Remote Sens Environ, 2014,144:65-72.
[27] 张丽光, 李丹, 刘磊, 王蕾, 孙志梅, 彭正萍, 薛世川. 不同施肥种植模式对玉米光合特性、养分效率及产量性状的影响. 水土保持学报, 2013,27(2):115-119.
Zhang L G, Li D, Liu L, Wang L, Sun Z M, Peng Z P, Xue S C. Effects of different fertilization planting patterns on photosynthetic characteristics, nutrient efficiency and yield traits of maize. J Soil Water Conserv, 2013,27(2):115-119 (in Chinese with English abstract).
[28] 赵伟, 徐铮, 高大鹏, 安振, 高辉远, 张子山, 宁堂原, 李耕. 定向种植对夏玉米群体内光环境及叶片光合性能的影响. 应用生态学报, 2019,30:2707-2716.
Zhao W, Xu Z, Gao D P, An Z, Gao H Y, Zhang Z S, Ning T Y, Li G. Effects of directional planting on light environment and leaf photosynthesis of summer maize population. Chin J Appl Ecol, 2019,30:2707-2716 (in Chinese with English abstract).
[29] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019,45:248-255.
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019,45:248-255 (in Chinese with English abstract).
[30] 苏晓琼, 王美月, 束胜, 孙锦, 郭世荣. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013,40:2409-2418.
Su X Q, Wang M Y, Shu S, Sun J, Guo S R. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress. Acta Hortic Sin, 2013,40:2409-2418 (in Chinese with English abstract).
[31] Takehiro S, Daisuke T, Hiroshi F, Amane M, Chikahiro M. Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol, 2014,55:1184-1193.
doi: 10.1093/pcp/pcu061 pmid: 24793753
[32] Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol, 2010,61:32-42.
[1] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[2] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[3] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[4] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[5] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[6] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[7] MA Zheng-Bo, DONG Xue-Rui, TANG Hui-Hui, YAN Peng, LU Lin, WANG Qing-Yan, FANG Meng-Ying, WANG Qi, DONG Zhi-Qiang. Effect of tetramethyl glutaric acid on summer maize photosynthesis characteristics [J]. Acta Agronomica Sinica, 2020, 46(10): 1617-1627.
[8] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao,HAN Kun. The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization [J]. Acta Agronomica Sinica, 2020, 46(02): 238-248.
[9] WAN Ze-Hua,REN Bai-Zhao,ZHAO Bin,LIU Peng,ZHANG Ji-Wang. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities [J]. Acta Agronomica Sinica, 2019, 45(9): 1446-1453.
[10] ZHOU Bao-Yuan,MA Wei,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,ZHAO Ming. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system [J]. Acta Agronomica Sinica, 2019, 45(4): 589-600.
[11] Chao GAO,Xue-Wen LI,Yan-Wei SUN,Ting ZHOU,Gang LUO,Cai CHEN. Spatiotemporal characteristics of water requirement and agricultural drought during summer maize season in Huaihe River Basin [J]. Acta Agronomica Sinica, 2019, 45(2): 297-309.
[12] WANG Hong-Zhang,LIU Peng,JIA Xu-Cun,LI Jing,REN Hao,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements [J]. Acta Agronomica Sinica, 2019, 45(10): 1544-1553.
[13] CHEN Xiao-Ying,LIU Peng,CHENG Yi,DONG Shu-Ting,ZHANG Ji-Wang,ZHAO Bin,REN Bai-Zhao. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage [J]. Acta Agronomica Sinica, 2019, 45(10): 1565-1575.
[14] Rong-Fa LI,Peng LIU,Qing-Long YANG,Hao REN,Shu-Ting DONG,Ji-Wang ZHANG,Bin ZHAO. Effects of Lower Leaf Senescence on Carbon and Nitrogen Distribution and Yield Formation in Maize (Zea mays L.) with High Planting Density [J]. Acta Agronomica Sinica, 2018, 44(7): 1032-1042.
[15] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!