Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 739-746.doi: 10.3724/SP.J.1006.2022.12011

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice

WANG Yan1(), CHEN Zhi-Xiong2, JIANG Da-Gang3, ZHANG Can-Kui4, ZHA Man-Rong1,*()   

  1. 1College of Biology and Environmental Sciences, Jishou University, Jishou 416000, Hunan, China
    2College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    3College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
    4Department of Agronomy, Purdue University, Indiana 47907, IN, USA
  • Received:2021-02-10 Accepted:2021-06-16 Online:2021-07-19 Published:2021-07-19
  • Contact: ZHA Man-Rong E-mail:wy90408@163.com;zmr0729@163.com
  • Supported by:
    National Natural Science Foundation of China(32060432);Research Foundation of Education Bureau of Hunan Province(18C0578);Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization(2020B121201008)

Abstract:

Nitrogen fertilizer application is one of the main cultivation measures to raise the yield, and high nitrogen level has limited contribution to grain yield due to limited nitrogen translocation in rice. To clarify the effects of nitrogen allocation on rice growth, we constructed pOsSUT1::AtAMT1.2 transgenic rice, the ammonium transporter gene AtAMT1.2 specific expression in phloem to promote leaf nitrogen output. The growth and yield of transgenic plants were measured under HN (high nitrogen) and LN (low nitrogen) conditions. Compared to WT plants, more tillers and higher grain yield were detected in transgenic plants in response to HN condition. The sugar output in leaves was increased, and the relative expression levels of the strigolactone pathway related genes OsTB1 and OsD14 in tiller buds were down-regulated. Our results indicated that the increase of leaf nitrogen export by overexpressing AtAMT1.2 gene could promote sugar translocation from leaves to tillering buds, which improved the growth of tiller, increased the effective tiller number and nitrogen use efficiency.

Key words: nitrogen, rice (Oryza sativa L.), tiller, nitrogen use efficiency

Table 1

Primers for qRT-PCR in this study"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsSUT1 TCATCCCTCAGGTGGTCATCG CTTGGAGATCTTGGGCAGCAG
OsSUT2 GTCATACCACAGGTTATTGTGTC GAATTGCAAAGAATGGCCG
OsSUT4 CGTTGTTCCGCAGATAGTAGTG GTGTTCTGCTCAGCCAAATCC
OsSSI GGGCCTTCATGGATCAACC CCGCTTCAAGCATCCTCATC
OsGBSSI AACGTGGCTGCTCCTTGAA TTGGCAATAAGCCACACACA
OsGBSSIl AGGCATCGAGGGTGAGGAG CCATCTGGCCCACATCTCTA
OsFd-GOGAT TGGTTGAGGGCACTGGAGATCA AATATAGGCAAGGCCACCCGTC
OsNADH-GOGAT CCTGTCGAAGGATGATGAAGGTGA TGCATGGCCCTACTATCTTCGC
OsGS1.1 CAAGTCTTTTGGGCGTGATAT CTCAAGAATGTAGCGAG
OsGDH1 CATCTGATCATCTCCCTGTT TTCAGGCAATTCATCACTAC
OsGDH2 GGCCATTAACAACACTCATA ACGCCGATCTATCTTGAAT
OsGDH3 CCAAAAGTACATGAAGAACG GTGATTCCTCAACAGATTCTC
OsTB1 GCCGGATGCAAGAAATC TCAGCAGTAGTGCCGCGAA
OsD14 CGCCTTCGTCGGCCACTC TCGAACCCGCCGTGGTAGTC
OsMADS57 ATGGGGAGGGGGAAGATAG AATTTAGGCTTCTAGAAAGTTCG
AtAMT1.2 ATGGCGACGTGCTTGGACAG CGAGCACGTTGGTGAGCATG
Actin CAATCGTGAGAAGATGACCC GTCCATCAGGAAGCTCGTAGC

Fig. 1

Screening of pOsSUT1::AtAMT1.2 transgenic lines A: the relative expression level of AtAMT1.2 in leaf; B: tiller number. *: P < 0.05; **: P < 0.01. (n = 3)."

Fig. 2

Growth of pOsSUT1::AtAMT1.2 transgenic rice plants under different nitrogen conditions in 2020 (A): phenotype of rice plants at elongation stage, Bar: 15 cm; (B) number of tillers and (C) dry weight of transgenic rice plants in HN; (D) tillers number and (E) dry weight of transgenic rice plants in LN. *: P < 0.05; **: P < 0.01 (n = 3); HN: high nitrogen; LN: low nitrogen."

Table 2

Effects of different nitrogen rates on grain yield and yield components in pOsSUT1::AtAMT1.2 transgenic rice plants"

种植时间/处理
Planting time/treatment
品种
Cultivar
有效穗数/株
Effective panicle per plant
颖花数/穗
Spikelets per panicle
颖花数/株
Spikelets per plant
产量/株
Grain yield (g plant-1)
2020/5 高氮HN WT 7.0±1.9 72.3 ±11.9 490.5±95.3 9.8±1.8
SA11 10.0±2.1** 74.5±11.2 721.3±140.1** 16.6±2.5**
SA33 9.6±2.2* 75.8±12.2 744.3±152.8** 17.0±2.5**
低氮LN WT 5.3±1.5 52.5±7.1 246.6±60.8 5.4±1.0
SA11 5.3±1.6 52.4±6.4 257.4±44.1 5.5±1.1
SA33 5.5±1.5 53.3±8.8 255.2±47.5 5.5±1.0
2020/9 高氮HN WT 9.6±1.0 83.7±17.2 833.1±114.0 19.6±2.3
SA11 15.2±1.4** 82.5±10.1 1146.7±214.4** 27.9±3.9**
SA33 14.1±1.5* 86.7±17.4 1087.6±146.3* 27.5±4.0**
低氮LN WT 6.5±1.0 61.7±8.0 403.8±77.8 9.7±1.7
SA11 6.9±0.9 63.1±8.9 442.6±75.1 10.0±1.4
SA33 6.7±1.1 62.1±7.9 420.4±73.6 9.8±0.9

Table 3

Effects of nitrogen amount on nitrogen concentration in the different organs of pOsSUT1::AtAMT1.2 transgenic rice"

种植时间/处理
Planting date/treatment
品种
Cultivar

Leaf (%)

Steam (%)

Panicle (%)
2020/5 高氮HN WT 1.07±0.09 0.96±0.06 1.03±0.08
SA11 0.98±0.05* 1.01±0.10 1.15±0.07**
SA33 0.97±0.07* 1.02±0.07* 1.13±0.08**
低氮LN WT 0.86±0.05 0.83±0.06 0.79±0.06
SA11 0.85±0.04 0.86±0.04 0.81±0.05
SA33 0.87±0.06 0.85±0.04 0.82±0.06
2020/9 高氮HN WT 1.00±0.09 0.94±0.06 1.12±0.12
SA11 0.93±0.04* 1.01±0.10 1.28±0.11**
SA33 0.91±0.08* 1.04±0.11* 1.27±0.09**
低氮LN WT 0.84±0.08 0.83±0.06 0.81±0.06
SA11 0.85±0.07 0.84±0.05 0.84±0.11
SA33 0.83±0.09 0.86±0.06 0.83±0.06

Fig. 3

Nitrogen use efficiency (NUE) of pOsSUT1::AtAMT1.2 transgenic rice plants under different nitrogen levels The transgenic rice plants were planted in September in 2020. *: P < 0.05; **: P < 0.01 (n = 3); HN: high nitrogen; LN: low nitrogen."

Fig. 4

Tiller number and biomass accumulation of pOsSUT1::AtAMT1.2 transgenic rice plants The transgenic rice plants were planted in September in 2020. (A) the number of tillers; (B) fresh weight; (C) the relative expression levels of genes related to the strigolactone pathway in tillering buds. *: P < 0.05; **: P < 0.01 (n = 3); DAS: days after seeding."

Fig. 5

Relative expression patterns of genes related to nitrogen metabolism in pOsSUT1::AtAMT1.2 transgenic rice plant leaves under high nitrogen The transgenic rice plants were planted in September in 2020. *: P < 0.05; **: P < 0.01 (n = 3)."

Fig. 6

Carbon and nitrogen metabolism in pOsSUT1::AtAMT1.2 transgenic rice plant leaves under high nitrogen The transgenic rice plants were planted in September in 2020. (A) the photosynthetic efficiency; (B) the content of starch; (C) the content of soluble sugar; (D) the relative expression levels of sugar transporters. *: P < 0.05; **: P < 0.01 (n = 3); Pn: net photosynthetic rate."

[1] Li S, He P, Jin J. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. J Sci Food Agric, 2013, 93:1191-1197.
doi: 10.1002/jsfa.5874
[2] Xu M, Li D, Li J, Qin D, Hosen Y, Shen H, Rihuan C, He X. Polyolefin-coated urea decreases ammonia volatilization in a double rice system of southern china. Agron J, 2013, 105:277-284.
doi: 10.2134/agronj2012.0222
[3] 孙志广, 王宝祥, 杨波, 徐波, 邢运高, 刘艳, Kazeem B B. 施氮量对不同水稻品种氮肥利用率和农艺性状的影响. 江西农业学报, 2019, 31:23-28.
Sun Z G, Wang B X, Yang B, Xu B, Xing Y G, Liu Y, Kazeem B B. Effects of nitrogen application levels on nitrogen use efficiency and agronomic traits of rice cultivars. Acta Agric Jiangxi, 2019, 31:23-28 (in Chinese with English abstract).
[4] 李俊周, 邵鹏, 彭廷, 张静, 孙红正, 赵全志. 施氮量对杂交水稻Y两优886产量、稻米品质及氮肥吸收利用的影响. 杂交水稻, 2017, 32(6):50-54.
Li J Z, Shao P, Peng T, Zhang J, Sun H Z, Zhao Q Z. Effects of nitrogen rate on grain yield, quality and nitrogen uptake and utilization of hybrid rice Y-liangyou 886. Hybrid Rice, 2017, 32(6):50-54 (in Chinese with English abstract).
[5] 段里成, 吕伟生, 方加海, 曾勇军, 石庆华, 潘晓华, 蔡海生, 吴自明. 施氮量和每穴苗数对双季杂交早稻产量及氮肥利用率的影响. 生态学杂志, 2018, 37:2959-2967.
Duan L C, Lyu W S, Fang J H, Zeng Y J, Shi Q H, Pan X H, Cai H S, Wu Z M. Effects of nitrogen application rate and seedlings per hole on yield and nitrogen use efficiency of double-season early hybrid rice. Chin J Ecol, 2018, 37:2959-2967 (in Chinese with English abstract).
[6] 邹应斌, 敖和军, 夏冰, 唐启源, 彭少兵, Buresh R J. 不同氮肥施用对杂交稻产量及其氮素利用效率的影响. 作物研究, 2008, 22:214-219.
Zou Y B, Ao H J, Xia B, Tang Q Y, Peng S B, Buresh R J. Effects of different nitrogen application on the yield and nitrogen use efficiency in hybrid rice. Crop Res, 2008, 22:214-219 (in Chinese with English abstract).
[7] 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12:616-621.
Zhang Y L, Huang Q W, Xu Y C, Shen Q R. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci, 2006, 12:616-621 (in Chinese with English abstract).
[8] 阳显斌, 张锡洲, 李廷轩, 余海英, 吴德勇. 不同产量水平小麦的氮吸收利用差异. 核农学报, 2010, 24:1073-1079.
Yang X B, Zhang X Z, Li Y X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level. J Nucl Agric Sci, 2010, 24:1073-1079 (in Chinese with English abstract).
[9] Shiratsuchi H, Yamagishi T, Ishii R. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Res, 2006, 95:291-304.
doi: 10.1016/j.fcr.2005.04.005
[10] Mae T, Makino A, Ohira K. Oryza sativa L.) Oryza sativa L.). Plant Cell Physiol, 1983, 24:1079-1086.
[11] Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J J. amt1 by glutamine in rice amt1 by glutamine in rice. Plant Cell Physiol, 2003, 44:1396-1402.
doi: 10.1093/pcp/pcg169
[12] Shelden M C, Dong B, Guy L, Trevaskis B, Whelan J, Ryan P R, Howitt S M, Udvardi M K. Arabidopsis ammonium transporters, AtAMT1;1 and AtAMT1;2, have different biochemical properties and functional roles. Plant Soil, 2001, 231:151-160.
doi: 10.1023/A:1010303813181
[13] Scofield G N, Hirose T, Aoki N, Furbank R T. Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot, 2007, 58:3155-3169.
pmid: 17728297
[14] Kosuke M, Hiromu K, Naoko Y, Mikihisa U, Le L, Kaoru K, Atsushi H, Kotomi U, Tadao A, Shinjiro Y, Junko K. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol, 2010, 51:1127-1135.
doi: 10.1093/pcp/pcq083
[15] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. OsMADS57 and OsTB1 modulates rice tillering via DWARF14 OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4:1566.
doi: 10.1038/ncomms2542
[16] Selvaraj M J, Valencia M O, Ogawa S, Lu Y Z, Wu L Y, Downs C, Skinner W, Lu Z J, Kridl J C, Ishitani M, Boxtel J V. Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol J, 2017, 15:775-787.
doi: 10.1111/pbi.12675 pmid: 27889933
[17] Li H, Hu B, Chu C C. Arabidopsis and rice Arabidopsis and rice. J Exp Bot, 2017, 68:2477-2488.
doi: 10.1093/jxb/erx101
[18] Agrell D, Oscarson P, Larsson C M. Translocation of N to and from barley roots its dependence on localnitrate supply in splitroot cultures. Physiol Plant, 1994, 90:467-474.
doi: 10.1111/ppl.1994.90.issue-3
[19] Ohashi M, Ishiyama K, Kusano M, Fukushima A, Kojima S, Hayakawa T, Yamaya T. fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2 fructose-1,6-bisphosphatase 2 causes tiller outgrowth cessation in rice mutants lacking glutamine synthetase1;2. Rice, 2018, 11:65.
doi: 10.1186/s12284-018-0261-y pmid: 30578468
[20] Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz K B, Brunel N, Guilliot A, Rageau R. Améglio T, Pétel G, Sakr S. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol, 2008, 28:215-224.
pmid: 18055432
[21] Maurel K, Leite G B, Bonhomme M, Guilliot A, Rageau R, Petel G, Sakr S. Prunus persica) trees: a possible role of hexoses Prunus persica) trees: a possible role of hexoses. Tree Physiol, 2004, 24:579-588.
doi: 10.1093/treephys/24.5.579
[22] Smeekens S, Ma J, Hanson J, Rolland F. Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol, 2010, 13:273-278.
doi: 10.1016/j.pbi.2009.12.002
[23] Granot D, Schwartz R D, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci, 2013, 4:44.
doi: 10.3389/fpls.2013.00044 pmid: 23487525
[24] Salam B B, Barbier F, Danieli R, Paula T B, Ziv C, SpIchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F, Mira W C, Amit G O, Jiang J M, Ori N, Beveridge C, Eshel D. Sucrose promotes stem branching through cytokinin. Plant Physiol, 2021, 185:1-14.
[25] Barbier F, Peron T, Lecerf M, Garcia P, Barriere Q, Rolcik J, Mercey S B, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Gourrierec J L, Bertheloot J, Sakr S. Rosa hybrid Rosa hybrid. J Exp Bot, 2015, 66:2569-2582.
doi: 10.1093/jxb/erv047
[26] Wang F, Han T W, Song Q X, Ye W X, Song X G, Chu J F, Li J Y, Chen Z J. Rice circadian clock regulates tiller growth and panicle through strigolactone signaling and sugar sensing. Plant Cell, 2020, 10:10.
[27] 董桂春, 于小凤, 赵江宁, 居静, 田昊, 李进前, 张燕, 王余龙. 不同穗型常规籼稻品种氮素吸收利用的基本特点. 作物学报, 2009, 35:2091-2100.
Dong G C, Yu X F, Zhao J N, Ju J, Tian H, Li J Q, Zhang Y, Wang Y L. General characteristics of nitrogen uptake and utilization in conventional indica rice cultivars with different panicle weight types. Acta Agron Sin, 2009, 35:2091-2100 (in Chinese with English abstract).
[28] 张亚丽, 樊剑波, 段英华, 王东升, 叶利庭, 沈其荣. 不同基因型水稻氮利用效率的差异及评价. 土壤学报, 2008, 45:267-273.
Zhang Y L, Fan J B, Duan Y H, Wang D S, Ye L T, Shen Q R. Variation of nitrogen use efficiency of rice different in genotype and its evaluation. Acta Pedol Sin, 2008, 45:267-273 (in Chinese with English abstract).
[29] 魏海燕, 张洪程, 杭杰, 戴其根, 霍中洋, 许轲, 张胜飞, 马群, 张庆, 张军. 不同氮素利用效率基因型水稻氮素积累与转移的特性. 作物学报, 2008, 34:119-125.
doi: 10.3724/SP.J.1006.2008.00119
Wei H Y, Zhang H C, Hang J, Dai Q G, Huo Z Y, Xu K, Zhang S F, Ma Q, Zhang Q, Zhang J. Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34:119-125 (in Chinese with English abstract).
[30] Zhang Y L, Fan J B, Wang D S. Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars. Pedosphere, 2009, 19:681-691.
doi: 10.1016/S1002-0160(09)60163-6
[31] 王彦荣, 华泽田, 陈温福, 代贵金, 郝宪彬, 王岩, 张忠旭, 隋国民. 粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响. 作物学报, 2003, 29:892-898.
Wang Y R, Hua Z T, Chen W F, Dai G J, Hao X B, Wang Y, Zhang Z X, Sui G M. Relation between root and leaf senescence and their effects on grain-filling in japonica rice. Acta Agron Sin, 2003, 29:892-898 (in Chinese with English abstract).
[32] Yu J, Xuan W, Tian Y L, Fan L, Sun J, Tang W J, Chen G M, Wang B X, Liu Y, Wu W, Liu X L, JiangX Z, Zhou C, Dai Z Y, Xu D Y, Wang C M, Wan J M. OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol J, 2021, 19:167-176.
doi: 10.1111/pbi.v19.1
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] LI Xin-Ge, GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang. Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat [J]. Acta Agronomica Sinica, 2022, 48(4): 975-987.
[8] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[9] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[10] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[11] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[12] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[13] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[14] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[15] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!