Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 975-987.doi: 10.3724/SP.J.1006.2022.11033

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat

LI Xin-Ge(), GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang*()   

  1. National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture / Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing 210095, Jiangsu, China
  • Received:2021-03-25 Accepted:2021-07-12 Online:2022-04-12 Published:2021-08-04
  • Contact: CAO Qiang E-mail:2018101002@njau.edu.cn;qiangcao@njau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31601222);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2020]135);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2020]415);Independent Project of Jiangsu Key Laboratory of Information Agriculture(KLIAKF1602)

Abstract:

To clarify the effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat, a two-year winter wheat field experiment under different sowing dates, sowing rates, and nitrogen rates was conducted. We studied systematically the effects of three factors and their interactions on yield, leaf area index (LAI), and normalized difference red edge (NDRE) of winter wheat at critical growth stages. Furthermore, to facilitate real-time monitoring of winter wheat growth dynamics, we also established the appropriate time-series curves of winter wheat canopy NDRE under different yield levels. The results indicated that the change patterns of NDRE and LAI at critical growth stages were very consistent, and the response of three factors to the two indices at critical growth stages was basically the same in winter wheat. In 2018 and 2019, the yield, LAI, and NDRE of winter wheat at each growth stages decreased with the delay of sowing date. In 2019 and 2020, the yield, peaks of LAI and NDRE under late sowing date were the largest except for the filling stage. The LAI and NDRE of winter wheat at different growth stages in the two years increased with the increase of nitrogen rates. However, there was basically no significant difference among sowing rates. Among the three factors, the sowing dates and nitrogen rates had a significant influence on the time-series curves of winter wheat canopy NDRE. The NDRE time series curves of winter wheat were stretched with the increase of nitrogen rates, the descending part of NDRE time series curve shifted to the left with the delay of the sowing date. In 2018 and 2019, the peak values of NDRE time series curves of winter wheat were declined with the delay of the sowing date. In 2019 and 2020, the peak values of the NDRE time series curves of late sowing and over-late sowing winter wheat were higher than that of suitable sowing wheat. The data of two years were merged to establish suitable time-series curves of winter wheat canopy NDRE under three yield levels, and the yield levels were less than 6.75 t hm-2, 6.75-8.25 t hm-2, and higher than 8.25 t hm-2, respectively. The peak values and width of the NDRE time-series curves increased with the increase of yield level. In summary, winter wheat should be sown early at an appropriate date, but if the accumulated temperature before winter was higher, the sowing date should be postponed appropriately. And the growth of late sowing winter wheat could be improved by increasing a certain amount of sowing rates and nitrogen rates. At the same time, these results could provide a technical support for monitoring the growth of winter wheat under different sowing dates and different yield levels.

Key words: sowing date, sowing rate, nitrogen rate, LAI, NDRE

Table 1

Variance analysis of winter wheat yield"

变异来源
Source of variance
处理
Treatment
2018-2019 2019-2020
播期 S1 6.87 a 7.63 b
Sowing date S2 6.31 b 8.15 a
S3 5.71 c 7.73 b
播量 D1 6.09 b 7.83 a
Sowing rate D2 6.30 ab 7.76 a
D3 6.50 a 7.93 a
施氮量 N0 4.21 c 4.51 c
Nitrogen rate N1 6.15 b 8.02 b
N2 6.69 a 8.22 a
N3 6.75 a 8.39 a
因素互作 S×D ns *
Factor interactions S×N ** **
D×N *** ns
S×D×N ** ns

Table 2

Analysis of variance of LAI and canopy NDRE in winter wheat"

变异来源
Source of variances
自由度
DF
LAI NDRE
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
开花期
Flowering
灌浆期
Filling
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
开花期
Flowering
灌浆期
Filling
年份
Year
1 *** *** *** *** *** *** *** *** *** ***
播期
Sowing date
2 *** *** *** *** *** *** *** *** *** ***
播量
Sowing rate
2 *** *** *** * ns *** *** ** * **
施氮量
Nitrogen rate
3 *** *** *** *** *** *** *** *** *** ***
年份×播期
Year×Sowing date
2 *** *** *** *** *** *** *** *** *** ***
年份×播量
Year×Sowing rate
2 ns * ** * ns * *** ** ns ns
年份×施氮量
Year×Nitrogen rate
3 *** *** *** *** *** *** *** *** *** ***
播期×施氮量
Sowing date×Sowing rate
4 *** ** ns ns ** *** ** *** ns ***
播期×施氮量
Sowing date×Nitrogen rate
6 *** *** *** *** *** *** *** *** *** ***
播量×施氮量
Sowing rate×Nitrogen rate
6 *** *** *** *** ns ** *** ** *** *
年份×播期×播量
Year×Sowing date×Sowing rate
4 ns ns ** ns ns *** * *** *** ***
年份×播期×施氮量
Year×Sowing date×Nitrogen rate
6 *** *** *** *** *** *** *** *** *** *
年份×播量×施氮量
Year×Sowing rate×Nitrogen rate
6 *** *** ns ** * * * ns ** *
播期×播量×施氮量
Sowing date×Sowing rate×Nitrogen rate
12 ** *** *** ** ns * *** *** *** ***
年份×播期×播量×施氮量
Year×Sowing date×Sowing rate×Nitrogen rate
12 ** ** *** *** ** *** *** *** ** ***

Fig. 1

Effects of three factors on LAI and canopy NDRE of winter wheat at different growth stages The different lowercase letters (a, b, c, d) in the figure represent that there was significant difference among treatments at P < 0.05."

Fig. 2

Effects of interaction of factors on LAI of winter wheat at different growth stages"

Fig. 3

Effects of interaction of factors on NDRE of winter wheat at different growth stages"

Fig. 4

Time series dynamics of winter wheat canopy NDRE under different treatments"

Table 3

Effects of three factors on the characteristic parameters of winter wheat canopy NDRE time series curves"

来源
Source
处理
Treatment
2018-2019 2019-2020
Ymax kg (×10-3) tg ks (×10-3) ts Ymax kg (×10-3) tg ks (×10-3) ts
播期 S1 0.362 a 5.5 b 527.21 a 6.6 a 1817.94 a 0.377 a 7.6 a 797.85 a 7.0 a 1983.83 a
Sowing date S2 0.356 a 6.0 a 444.86 b 7.9 a 1700.68 b 0.399 a 6.1 a 498.71 b 7.8 a 1841.77 b
S3 0.355 a 4.2 c 514.14 a 7.8 a 1647.17 c 0.420 a 7.1 a 533.96 b 8.5 a 1730.53 c
Sig. ns <0.001 <0.001 ns <0.001 ns ns <0.001 ns <0.001
播量 D1 0.355 a 5.3 a 509.89 a 7.7 a 1729.11 a 0.397 a 6.8 a 616.12 a 7.8 a 1858.54 a
Sowing rate D2 0.356 a 5.3 a 498.26 a 7.3 a 1719.54 a 0.398 a 7.2 a 615.78 a 7.8 a 1849.84 a
D3 0.363 a 5.3 a 478.06 a 7.3 a 1717.15 a 0.401 a 6.8 a 598.63 a 7.8 a 1847.74 a
Sig. ns ns ns ns ns ns ns ns ns ns
施氮量 N0 0.256 c 5.1 a 445.11 b 5.1 b 1716.39 a 0.286 b 4.8 b 606.96 a 4.7 b 1790.57 a
Nitrogen rate N1 0.376 b 5.2 a 522.76 a 8.3 a 1711.95 a 0.426 a 7.6 a 627.80 a 8.7 a 1861.22 a
N2 0.394 a 5.3 a 514.32 a 8.2 a 1724.18 a 0.440 a 7.3 a 602.09 a 8.9 a 1873.56 a
N3 0.405 a 5.3 a 499.42 a 8.1 a 1735.19 a 0.444 a 8.0 a 603.84 a 8.8 a 1882.82 a
Sig. <0.001 ns 0.004 <0.001 ns <0.001 <0.001 ns <0.001 ns

Fig. 5

Suitable time series dynamics of winter wheat canopy NDRE under different treatments"

Table 4

Yield level division"

产量水平
Yield level
产量
Yield (t hm-2)
样本数
Sample number
最大值
Max.
最小值
Min.
均值
Mean value
低产 Low yield <6.75 19 6.73 5.20 6.22
中产 Medium yield 6.75-8.25 21 8.24 6.95 7.69
高产 High yield ≥8.25 14 8.63 8.26 8.43

Fig. 6

Suitable time-series dynamics of winter wheat canopy NDRE under different yield levels"

Fig. 7

Relationship between simulated values of winter wheat canopy NDRE time-series curve and actual NDRE values under different yield levels"

[1] 刘万代, 陈现勇, 尹钧, 杜沛鑫. 播期和密度对冬小麦豫麦49-198群体性状和产量的影响. 麦类作物学报, 2009, 29:464-469.
Liu W D, Chen X Y, Yin J, Du P X. Effect of sowing date and planting density on population trait and grain yield of winter wheat cultivar yumai 49-198. J Triticeae Crops, 2009, 29:464-469 (in Chinese with English abstract).
[2] 赵雪飞, 王丽金, 李瑞奇, 李雁鸣. 不同灌水次数和施氮量对冬小麦群体动态和产量的影响. 麦类作物学报, 2009, 29:1004-1009.
Zhao X F, Wang L J, Li R Q, Li Y M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat. J Triticeae Crops, 2009, 29:1004-1009 (in Chinese with English abstract).
[3] 胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008, 28:490-495.
Hu H H, Liu L P, Li R Q, Li H L, Li Y M. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. J Triticeae Crops, 2008, 28:490-495 (in Chinese with English abstract).
[4] 刘萍, 郭文善, 徐月明, 封超年, 朱新开, 彭永欣. 种植密度对中、弱筋小麦籽粒产量和品质的影响. 麦类作物学报, 2006, 26:117-121.
Liu P, Guo W S, Xu Y M, Feng C N, Zhu X K, Peng Y X. Effect of planting density on grain yield and quality of weak-gluten and medium-gluten wheat. J Triticeae Crops, 2006, 26:117-121 (in Chinese with English abstract).
[5] Shah F, Coulter J A, Ye C, Wu W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur J Agron, 2020, 119:126120.
[6] 李东升, 温明星, 蔡金华, 曲朝喜, 陈爱大. 播期和密氮组合对镇麦10号干物质积累及产量的调控效应. 麦类作物学报, 2015, 35:1426-1432.
Li D S, Wen M X, Cai J H, Qu C X, Chen A D. Effect of sowing date and the combination of planting density and nitrogen application on yield and dry matter accumulation of Zhenmai 10. J Triticeae Crops, 2015, 35:1426-1432 (in Chinese with English abstract).
[7] 胡文静, 程顺和, 高致富, 吴荣林, 陆成彬. 晚播条件下小麦籽粒产量、硬度与蛋白质含量对品种、施氮量和密度的响应. 江苏农业学报, 2018, 34:245-250.
Hu W J, Cheng H S, Gao Z F, Wu R L, Lu R L. Response of grain yield, hardness and protein content to cultivar, nitrogen fertilizer rate and plant density under late sowing condition. Jiangsu J Agric Sci, 2018, 34:245-250 (in Chinese with English abstract).
[8] 简大为, 祁军, 张燕, 苏甫热木, 张喜琴. 播种期和密度对冬小麦新冬29号产量形成的影响. 西北农业学报, 2011, 20(11):47-51.
Jian D W, Qi J, Zhang Y, Su Fu R M, Zhang X Q. Effect of sowing date and planting density on the yield formation of a winter wheat culticar Xindong 29. Southeast China J Agric Sci, 2011, 20(11):47-51 (in Chinese with English abstract).
[9] 王夏, 胡新, 孙忠富, 杜克明, 宋广树, 任德超. 不同播期和播量对小麦群体性状和产量的影响. 中国农学通报, 2011, 27(21):170-176.
Wang X, Hu X, Sun Z F, Du K M, Song G S, Ren D C. Effect of different sowing dates and planting density on group characters and yield of wheat. Chin Agric Sci Bull, 2011, 27(21):170-176 (in Chinese with English abstract).
[10] 刘芳亮, 任益锋, 王卫东, 党忠, 张保军. 播期和密度对冬小麦普冰151籽粒灌浆特性及产量的影响. 山东农业科学, 2017, 49(6):41-47.
Liu F L, Ren Y F, Wang W D, Dang Z, Zhang B J. Effect of sowing date and planting density on grain-filling characteristics and yield of winter wheat cultivar pubing 151. Shandong Agric Sci, 2017, 49(6):41-47 (in Chinese with English abstract).
[11] 王惠芳, 张青珍, 张明捷, 朱腾冉. 豫东北气温变化趋势及对冬小麦生长发育的影响. 中国农学通报, 2010, 26(11):341-345.
Wang H F, Zhang Q Z, Zhang M J, Zhu T R. Yu-northeast trend temperature changing on winter wheat growth and development. Chin Agric Sci Bull, 2010, 26:341-345 (in Chinese with English abstract).
[12] 陈英慧. 气候变化对河南南部冬小麦播种期的影响. 气象, 2005, 31(10):83-85.
Chen Y H. Impact of climate change on the seedtime of winter wheat in the southern area of Henan province. Meteorol Monthly, 2005, 31(10):83-85 (in Chinese with English abstract).
[13] Aranguren M, Castellón A, Aizpurua A. Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture, 2020, 10:148.
doi: 10.3390/agriculture10050148
[14] Mistele B, Schmidhalter U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur J Agron, 2008, 29:184-190.
doi: 10.1016/j.eja.2008.05.007
[15] Cao Q, Miao Y, Wang H, Huang S, Cheng S, Khosla R, Jiang R. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops Res, 2013, 154:133-144.
doi: 10.1016/j.fcr.2013.08.005
[16] Prost L, Jeuffroy M. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron Sustain Dev, 2007, 27:321-330.
doi: 10.1051/agro:2007032
[17] 项方林, 李鑫格, 马吉锋, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 基于冠层时序植被指数的冬小麦单产预测. 中国农业科学, 2020, 53:3679-3692.
Xiang F L, Li X G, Ma J F, Liu X J, Tian Y C, Zhu Y, Cao W X, Cao Q. Using canopy time-series vegetation index to predict yield of winter wheat. Sci Agric Sin, 2020, 53:3679-3692 (in Chinese with English abstract).
[18] Kanke Y, Tubaña B, Dalen M, Harrell D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis Agric, 2016, 17:507-530.
doi: 10.1007/s11119-016-9433-1
[19] Zhang K, Ge X, Shen P, Li W, Liu X, Cao Q, Zhu Y, Cao W, Tian Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens(Basel, Switzerland), 2019, 11:387.
[20] Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. A crop phenology detection method using time-series MODIS data. Remote Sens Environ, 2005, 96:366-374.
doi: 10.1016/j.rse.2005.03.008
[21] Zhou M, Ma X, Wang K, Cheng T, Tian Y, Wang J, Zhu Y, Hu Y, Niu Q, Gui L, Yue C, Yao X. Detection of phenology using an improved shape model on time-series vegetation index in wheat. Comput Electron Agric, 2020, 173:105398.
[22] Liu X, Ferguson R, Zheng H, Cao Q, Tian Y, Cao W, Zhu Y. Using an active-optical sensor to develop an optimal NDVI dynamic model for high-yield rice production (Yangtze, China). Sensors-Basel, 2017, 17:672.
doi: 10.3390/s17040672
[23] Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A. Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens Environ, 2015, 161:131-148.
doi: 10.1016/j.rse.2015.02.014
[24] Mcmaster G S, Smika D E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol, 1988, 43:1-18.
doi: 10.1016/0168-1923(88)90002-0
[25] Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ, 1994, 48:220-230.
doi: 10.1016/0034-4257(94)90143-0
[26] 高聚林, 刘克礼, 刘瑞香, 张永平, 张铁山, 白立华, 杜瑞霞. 不同栽培条件对春小麦叶面积指数的影响. 麦类作物学报, 2003, 23:85-89.
Gao J L, Liu K L, Liu R X, Zhang Y P, Zhang T S, Bai L H, Du R X. Effects of different cultivation conditions on leaf area index of spring wheat. J Triticeae Crops, 2003, 23:85-89 (in Chinese with English abstract).
[27] 胡霞. 氮素供应对弱筋小麦产量及品质性状影响的研究. 安徽农业大学硕士学位论文,安徽合肥, 2005.
Hu X. Studies on Yield and Quality of Weak Gluten Wheat under the Nitrogen Application. MS Thesis of Anhui Agricultural University, Hefei, Anhui,China, 2005 (in Chinese with English abstract).
[28] 任书杰, 李世清, 王全九, 李生秀. 栽培模式、施氮和品种对冬小麦冠层结构和产量的影响. 生态学杂志, 2006, 25:1449-1454.
Ren S J, Li S Q, Wang Q J, Li S X. Effects of cultivation mode, nitrogen fertilization, and cultivar on winter wheat canopy parameters and grain yields in sub-humid area. Chin J Ecol, 2006, 25:1449-1454 (in Chinese with English abstract).
[29] 王之杰, 郭天财, 朱云集, 王纪华, 赵明. 超高产小麦冠层光辐射特征的研究. 西北植物学报, 2003, 23:1657-1662.
Wang Z J, Guo T C, Zhu Y J, Wang J H, Zhao M. Study on character of light radiation in canopy of super-high-yielding winter wheat. Acta Bot Boreali-Occident Sin, 2003, 23:1657-1662 (in Chinese with English abstract).
[30] 刘萍, 魏建军, 张东升, 王宝驹, 刘军, 刘建国. 播期和播量对滴灌冬小麦群体性状及产量的影响. 麦类作物学报, 2013, 23:1202-1207.
Liu P, Wei J J, Zhang D S, Wang B J, Liu J, Liu J G. Effect of seeding rate and sowing date on population traits and grain yield of drip irrigated winter wheat. J Triticeae Crops, 2013, 23:1202-1207 (in Chinese with English abstract).
[31] 张娜, 仵妮平, 徐文修, 吴培杰, 程雪峰. 不同施氮水平对滴灌冬小麦干物质生产及产量的影响. 中国农学通报, 2015, 31(33):21-26.
Zhang N, Wu N P, Xu W X, Wu P J, Cheng X F. Effect of nitrogen levels on dry matter and yield of winter wheat under drip irrigation. Chin Agric Sci Bull, 2015, 31(33):21-26 (in Chinese with English abstract).
[32] Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71:158-182.
doi: 10.1016/S0034-4257(99)00067-X
[33] 姚鑫锋. 小麦植株氮素营养无损监测与精确调控研究. 南京农业大学博士学位论文,江苏南京, 2012.
Yao X F. Non-destructive Monitoring and Precise Regulation of Plant Nitrogen Nutrition in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2012 (in Chinese with English abstract).
[34] 贾可, 刘建玲, 沈兵. 近14年北方冬小麦肥料产量效应变化及优化施肥方案. 植物营养与肥料学报, 2020, 26:2032-2042.
Jia K, Liu J L, Shen B. Yield effect change of fertilizers in the past 14 years and optimized fertilization of winter wheat in north of China. J Plant Nutr Fert, 2020, 26:2032-2042 (in Chinese with English abstract).
[35] Zhang K, Liu X, Tahir Ata-Ul-Karim S, Lu J, Krienke B, Li S, Cao Q, Zhu Y, Cao W, Tian Y. Development of chlorophyll- meter-index-based dynamic models for evaluation of high-yield japonica rice production in Yangtze River Reaches. Agronomy, 2019, 9:106.
doi: 10.3390/agronomy9020106
[36] 卫炜, 吴文斌, 李正国, 杨鹏, 胡琼, 周清波. 时间序列植被指数重构方法比对研究. 中国农业资源与区划, 2014, 35(1):34-43.
Wei W, Wu W B, Li Z G, Yang P, Hu Q, Zhou Q B. Comparison of three methods for reconstructing time series vegetation index. Chin J Agric Resour Regional Plan, 2014, 35(1):34-43 (in Chinese with English abstract).
[37] 曹云锋, 王正兴, 邓芳萍. 3种滤波算法对NDVI高质量数据保真性研究. 遥感技术与应用, 2010, 25:118-125.
Cao Y F, Wang Z X, Deng F P. Fidelity performance of three filters for high quality NDVI time-series analysis. Remote Sens Technol Appl, 2010, 25:118-125 (in Chinese with English abstract).
[38] Lim C H, Jung S H, Kim N S, Lee C S. Deduction of a meteorological phenology indicator from reconstructed MODIS LST imagery. J For Res, 2020, 31:2205-2216.
doi: 10.1007/s11676-019-01015-7
[39] Calvache I, Balocchi O, Alonso M, Keim J P, López I F. Thermal time as a parameter to determine optimal defoliation frequency of perennial ryegrass (Lolium perenne L.) and pasture brome(Bromus valdivianus Phil.). Agronomy, 2020, 10:620.
doi: 10.3390/agronomy10050620
[40] Böhler J E, Schaepman M E, Kneubühler M. Optimal timing assessment for crop separation using multispectral unmanned aerial vehicle (UAV) data and textural features. Remote Sens-Basel, 2019, 11:1780.
[41] 谭文, 杨再强, 李军. 基于温光效应的小白菜营养品质模拟模型研究. 中国农业气象, 2016, 37:59-67.
Tan W, Yang Z Q, Li J. Simulation of nutrient quality of pakchoi based on temperature-light function. Chin J Agrometeorol, 2016, 37:59-67 (in Chinese with English abstract).
[1] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[2] LI Bo, ZHANG Chi, ZENG Yu-Ling, LI Qiu-Ping, REN Hong-Chao, LU Hui, YANG Fan, CEHN Hong, WANG Li, CHEN Yong, REN Wan-Jun, DENG Fei. Effects of sowing date on eating quality of indica hybrid rice in Sichuan Basin [J]. Acta Agronomica Sinica, 2021, 47(7): 1360-1371.
[3] DONG Ming-Hui, CHEN Pei-Feng, JIANG Yi, CAO Peng-Hui, SONG Yun-Sheng, GU Jun-Rong, XIE Yu-Lin, QIAO Zhong-Ying, ZHANG Wen-Di, HUANG Li-Fen. Response of yield of different growth types of japonica rice varieties to climatic factors at different sowing dates in Taihu region of Jiangsu province [J]. Acta Agronomica Sinica, 2021, 47(5): 952-963.
[4] DONG Yu-Xin, WEI Bing-Qi, WU Qiang, ZHANG Yong-Ping. Cropping effect and variety adaptability of winter-seeded spring wheat in Inner Mongolia Plain irrigation area [J]. Acta Agronomica Sinica, 2021, 47(3): 481-493.
[5] XU Tian-Jun, LYU Tian-Fang, ZHAO Jiu-Ran, WANG Rong-Huan, ZHANG Yong, CAI Wan-Tao, LIU Yue-E, LIU Xiu-Zhi, CHEN Chuan-Yong, XING Jin-Feng, WANG Yuan-Dong, LIU Chun-Ge. Grain filling characteristics of summer maize varieties under different sowing dates in the Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2021, 47(3): 566-574.
[6] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[7] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[8] ZHONG Xiao-Yuan, DENG Fei, CHEN Duo, TIAN Qing-Lan, ZHAO Min, WANG Li, TAO You-Feng, REN Wan-Jun. Effects of sowing date on the numbers of branches and spikelets per panicle of machine-transplanted indica hybrid rice at different tiller positions [J]. Acta Agronomica Sinica, 2021, 47(10): 2012-2027.
[9] ZHOU Bao-Yuan,GE Jun-Zhu,HOU Hai-Peng,SUN Xue-Fang,DING Zai-Song,LI Cong-Feng,MA Wei,ZHAO Ming. Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2020, 46(6): 937-949.
[10] LI Wei-Tao,XU Zhi-Jun,CAI Yan,GUO Jian-Bin,YU Bo-Lun,HUANG Li,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,LIU Nian,CHEN Wei-Gang,REN Xiao-Ping,JIANG Hui-Fang. Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage [J]. Acta Agronomica Sinica, 2020, 46(4): 484-490.
[11] Shi-Hong WANG,Zhong-Xu YANG,Jia-Liang SHI,Hai-Tao LI,Xian-Liang SONG,Xue-Zhen SUN. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton [J]. Acta Agronomica Sinica, 2020, 46(3): 395-407.
[12] CHEN Tian-Ye, YUAN Jia-Qi, LIU Yan-Yang, XU Ke, GUO Bao-Wei, DAI Qi-Gen, HUO Zhong-Yang, ZHANG Hong-Cheng, LI Guo-Hui, WEI Hai-Yan. Effects of different sowing dates on crop yield, quality, and annual light-temperature resources utilization for rice-wheat double cropping system in the lower reaches of the Yangtze-Huaihe Rivers valley [J]. Acta Agronomica Sinica, 2020, 46(10): 1566-1578.
[13] ZHANG Chi, HE Lian-Hua, LIAO Shuang, GAO Yun-Tian, ZHU Shi-Lin, LI Bo, ZHOU Wei, CHEN Yong, HU Jian-Feng, XIANG Zu-Fen, REN Wan-Jun. Effect of sowing date on daily yield of mechanical indica hybrid rice under different ecological conditions [J]. Acta Agronomica Sinica, 2020, 46(10): 1579-1590.
[14] Yue-E LIU,Tian-Fang LYU,Jiu-Ran ZHAO,Rong-Huan WANG,Tian-Jun XU,Chuan-Yong CHEN,Yi-Tian ZHANG,Yuan-Dong WANG,Xiu-Zhi LIU. Silking duration characteristics in different maize hybrids and its response to sowing date [J]. Acta Agronomica Sinica, 2019, 45(2): 310-315.
[15] ZHANG Jing-Ting,LYU Li-Hua,DONG Zhi-Qiang,ZHANG Li-Hua,YAO Yan-Rong,SHEN Hai-Ping,YAO Hai-Po,JIA Xiu-Ling. Yield-increasing effect of supplementary irrigation at winter wheat flowering and its influencing factors based on water and nitrogen coupling in north China [J]. Acta Agronomica Sinica, 2019, 45(11): 1746-1755.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!