Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1235-1247.doi: 10.3724/SP.J.1006.2022.14064

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil

YAN Xiao-Yu1(), GUO Wen-Jun1,2, QIN Du-Lin1,3, WANG Shuang-Lei1,4, NIE Jun-Jun1, ZHAO Na1,5, QI Jie1, SONG Xian-Liang1, MAO Li-Li1,*(), SUN Xue-Zhen1,*()   

  1. 1Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
    2Qingxu County Information Industry Management Center, Taiyuan 030400, Shanxi, China
    3Technical Guidance Station of Cotton Production in Shandong Province, Jinan 250013, Shandong, China
    4Yantai Agricultural Technology Extension Service, Yantai 264000, Shandong, China
    5Dongying Agricultural Bureau, Dongying 257100, Shandong, China
  • Received:2021-04-16 Accepted:2021-07-12 Online:2022-05-12 Published:2021-08-10
  • Contact: MAO Li-Li,SUN Xue-Zhen E-mail:17854233509@163.com;maolili6666@163.com;sunxz@sdau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31601253);Agricultural Industry Technology System of Shandong Province (cotton, SDAIT-03);Shandong Program for Improved Varieties of Agriculture(2020LZGC002)

Abstract:

To study the effects of cotton straw returning and deep loosening on cotton yield, salt content in 0-40 cm soil layer, dry matter accumulation dynamics, nitrogen (N), phosphorus (P), and potassium (K) accumulation, and distribution characteristics, four treatments including conventional tillage (CT), subsoiling tillage (ST), cotton stubble return (SR), and cotton stubble return + subsoiling tillage (SRT) were conducted using Lumianyan 36 as experimental material. The results showed that cotton stubble return increased cotton yield across two years. Lint yield of SR was 33.9% higher than CT, and SRT 32.1% higher than SR. Subsoiling increased cotton yield in 2017 and had no effect on it in 2018. Cotton stubble return reduced the salt content of 0-40 cm soil layer. The salt content of SR was 22.4% lower than that of CT, and the soil salt content of SRT was 20.7% lower than that of ST at the late growth stage in cotton. However, the effect of subsoiling on the salt content of 20-40 cm soil layer was inconsistent during the two-year experiment. The soil salt content of ST was 16.5% lower than of CT at late growth stage in 2017, but subsoiling had no effect on soil salt content in 2018. The accumulation dynamic of dry matter and N, P, K in cotton were consistent with the Logistic growth curve. Cotton stubble return increased maximal accumulation of dry matter and N, P, K in two years. The maximum accumulation of dry matter, N, P, and K in SR was 35.5%, 38.3%, 53.4%, and 55.0% higher than that in CT, and the accumulation of SRT was 27.0%, 30.7%, 21.2%, and 42.4% higher than that in ST. Compared with CT, the dry matter, N, P, and K accumulation of ST increased by 17.8%, 22.2%, 51.3%, and 40.6% in 2017, respectively, but had no effect in 2018. The dynamic of dry matter and nutrient accumulation were mainly affected by the maximum accumulation rate and rapid accumulation duration. Stubble return increased the amount and proportion of dry matter and N, P, K allocated to reproductive organs of cotton in the two-year experiment. Compared with CT, ST increased the allocation amount of dry matter and N, P, K to reproductive organs in 2017, but had no effect in 2018. In summary, the results revealed that cotton stubble return (SR) or cotton stubble return + subsoiling tillage (SRT) could be recommended tillage measures for soil improvement and high cotton yield in coastal saline-alkali cotton area.

Key words: cotton, coastal saline-alkali soil, cotton stubble return, subsoiling tillage, dry matter accumulation, nutrient absorption, yield

Fig. 1

Average monthly temperature and precipitation during cotton growth seasons in 2017 and 2018"

Table 1

Effects of cotton stubble return and subsoiling on yield and its components in cotton"

年份
Year
处理
Treatment
群体铃数
Boll number
(×104 hm-2)
铃重
Boll weight
(g)
衣分
Lint percentage
(%)
皮棉产量
Lint yield
(kg hm-2)
2017 CT 51.9 d 4.7 c 40.6 a 980.7 d
ST 59.5 c 4.8 c 40.5 a 1104.0 c
SR 69.9 b 5.1 b 41.0 a 1445.0 b
SRT 72.3 a 5.4 a 40.8 a 1581.7 a
2018 CT 52.8 c 4.5 b 40.6 a 951.0 b
ST 57.9 b 4.5 b 40.5 a 1010.0 b
SR 60.9 ab 4.7 a 41.0 a 1148.0 a
SRT 65.6 a 4.7 a 40.8 a 1221.0 a

Fig. 2

Soil salt content in 0-20 cm (A, C) and 20-40 cm (B, D) soil layers Treatments are the same as those given in Table 1."

Fig. 3

Dry matter accumulation dynamics of cotton plants under stubble return and subsoiling conditions The circles and triangles in the figure represent the measured values in different periods of each treatment, and different lines represent the growth curves fitted different measured values. Treatments are the same as those given in Table 1."

Table 2

Characteristic parameters of dry matter accumulation dynamics of cotton plants under stubble return and subsoiling conditions"

年份
Year
处理Treatment Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
2017 CT 5920.9 74.2 121.9 97.0 78.4 47.7
ST 6976.8 69.6 120.0 94.8 91.0 50.5
SR 9355.3 69.1 122.2 95.7 115.7 53.2
SRT 9751.3 68.1 121.6 94.8 129.7 53.6
2018 CT 6000.3 72.9 109.7 91.3 107.3 36.7
ST 6185.9 73.1 109.6 91.4 111.6 36.5
SR 6774.4 66.5 103.1 84.8 121.9 36.6
SRT 7062.5 64.3 100.8 82.5 127.4 36.5

Fig. 4

Nitrogen accumulation dynamics of cotton plants under stubble return and subsoiling conditions Treatments are the same as those given in Table 1."

Table 3

Characteristic parameters of nitrogen accumulation dynamics of cotton plants under stubble return and subsoiling conditions"

年份
Year
处理
Treatment
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
2017 CT 100.0 64.3 91.9 78.1 2.3 27.6
ST 122.2 63.0 92.1 77.6 2.8 29.1
SR 151.9 60.4 89.0 74.7 3.6 28.6
SRT 164.3 63.3 91.8 77.6 3.9 28.6
2018 CT 98.8 68.7 88.6 78.6 3.2 19.9
ST 100.8 67.8 87.2 77.5 3.4 19.4
SR 123.2 64.9 86.5 75.7 3.9 21.5
SRT 127.9 64.0 85.3 75.2 4.3 21.3

Fig. 5

Phosphorus accumulation dynamics of cotton plants under stubble return and subsoiling conditions Treatments are the same as those given in Table 1."

Table 4

Characteristic parameters of phosphorus accumulation dynamics of cotton plants under stubble returning and subsoiling conditions"

年份
Year
处理
Treatment
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
2017 CT 22.8 67.9 96.9 82.4 0.6 29.0
ST 34.5 71.0 101.9 86.4 0.8 30.9
SR 40.1 67.9 98.1 83.0 1.1 30.2
SRT 42.0 66.9 96.3 82.6 1.3 29.4
2018 CT 29.1 77.9 89.9 83.9 1.5 12.0
ST 32.6 80.3 92.5 86.4 1.7 12.1
SR 38.1 74.9 88.1 81.5 2.3 13.4
SRT 39.3 74.2 87.6 80.9 2.4 13.6

Fig. 6

Potassium accumulation dynamics of cotton plants under stubble returning and subsoiling conditions Treatments are the same as those given in Table 1."

Table 5

Characteristic parameters of potassium accumulation dynamics of cotton plants under stubble returning and subsoiling conditions"

年份
Year
处理
Treatment
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
2017 CT 65.5 61.5 84.6 72.1 1.7 23.1
ST 92.1 60.6 85.3 73.5 2.4 24.7
SR 117.1 57.3 84.6 72.0 3.1 27.2
SRT 131.6 68.1 87.5 73.8 3.2 29.4
2018 CT 78.1 66.0 88.3 77.2 2.3 22.3
ST 79.4 65.2 88.8 77.0 2.3 23.5
SR 102.5 61.8 84.4 73.1 3.0 22.6
SRT 112.6 61.7 84.2 73.0 3.3 22.5

Table 6

Effects of cotton stubble return and subsoiling on the distribution of dry matter, nitrogen, phosphorus, and potassium in cotton"

处理
Treatment
2017 2018
营养器官
Vegetative organs
生殖器官
Reproductive organs
营养器官
Vegetative organs
生殖器官
Reproductive organs
分配量
DVO
(kg hm-2)
占比
Proportion
(%)
分配量
DRO
(kg hm-2)
占比
Proportion
(%)
分配量
DVO
(kg hm-2)
占比
Proportion
(%)
分配量
DRO
(kg hm-2)
占比
Proportion
(%)
干物质Dry matter
CT 3772.7 c 63.7 2148.2 c 36.3 3692.5 b 62.4 2227.5 b 37.6
ST 4203.0 b 60.2 2773.9 b 39.8 3749.7 b 61.5 2352.1 b 38.5
SR 5344.9 a 57.1 4020.9 a 42.9 4256.2 a 59.4 2908.6 a 40.6
SRT 5317.5 a 55.5 4257.1 a 44.5 3992.7 ab 57.9 2899.2 a 42.1
氮Nitrogen
CT 58.9 b 58.9 41.1 c 41.1 53.4 b 54.0 45.4 b 46.0
ST 66.1 b 54.1 56.1 b 45.9 52.9 b 52.5 47.9 b 47.5
SR 77.0 a 50.7 75.0 a 49.3 59.6 a 46.5 68.5 a 53.5
SRT 77.8 a 47.2 86.9 a 52.8 60.0 a 46.9 67.9 a 53.1
磷Phosphorus
CT 12.3 b 53.9 10.5 c 46.1 15.6 a 52.8 13.9 b 47.2
ST 18.9 a 54.7 15.6 b 45.3 16.5 a 50.1 16.4 b 49.9
SR 17.9 a 44.7 22.2 a 55.3 16.4 a 43.1 21.7 a 56.9
SRT 18.0 a 42.7 24.1 a 57.3 17.8 a 45.4 21.5 a 54.6
钾Potassium
CT 39.7 c 60.7 25.8 d 39.3 44.3 c 56.7 33.8 b 47.2
ST 48.7 b 52.9 43.4 c 47.1 42.5 c 53.6 36.9 b 49.9
SR 56.6 a 48.3 60.6 b 51.7 50.5 b 43.1 52.0 a 56.9
SRT 57.4 a 43.7 74.1 a 56.3 54.0 a 45.4 57.5 a 54.6
[1] Rozema J, Flowers T. Crops for a salinized World. Science, 2008, 322:1478-1480.
doi: 10.1126/science.1168572 pmid: 19056965
[2] 董红云, 朱振林, 李新华, 杨丽萍 . 张正. 山东省盐碱地分布、改良利用现状与治理成效潜力分析. 山东农业科学, 2017, 49(5):140-145.
Dong H Y, Zhu Z L, Li X H, Yang L P, Zhang Z. Analysis on distribution, utilization status and governance effect of saline-alkali soil in Shandong province. Shandong Agric Sci, 2017, 49(5):140-145 (in Chinese with English abstract).
[3] 辛承松, 董合忠, 唐薇, 张冬梅, 罗振, 李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点. 作物学报, 2008, 34:2033-2040.
doi: 10.3724/SP.J.1006.2008.02033
Xin C S, Dong H Z, Tang W, Zhang D M, Luo Z, Li W J. Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin, 2008, 34:2033-2040 (in Chinese with English abstract).
[4] Dong H, Li W, Eneji A E, Zhang D. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res, 2012, 126:137-144.
doi: 10.1016/j.fcr.2011.10.005
[5] 龙泽华, 王晶, 侯振安. 秸秆炭化还田和施氮量对棉田土壤有机氮组分的影响. 石河子大学学报(自然科学版), 2019, 37:154-161.
Long Z H, Wang J, Hou Z A. Effects of cotton straw biochar returning and N application rate on soil organic nitrogen fractions in cotton field. J Shihezi Univ (Nat Sci), 2019, 37:154-161 (in Chinese with English abstract).
[6] 刘会芳, 唐光木, 孙宁川, 秦蓓, 冯雷, 徐万里. 棉秆炭化还田对棉花生长及土壤理化特性的影响. 新疆农业科学, 2018, 55:1710-1716.
doi: 10.6048/j.issn.1001-4330.2018.09.017
Liu H F, Tang G M, Sun N C, Qin B, Feng L, Xu W L. Effects of different ways of returning cotton straw to the field on the growth and yield of cotton. Xinjiang Agric Sci, 2018, 55:1710-1716 (in Chinese with English abstract).
[7] 冯国艺, 张谦, 王树林, 祁虹, 杜海英, 李智峰, 梁青龙, 林永增. 秸秆还田对滨海盐碱地棉苗光合特性及生长的影响. 棉花学报, 2015, 27:248-253.
Feng G Y, Zhang Q, Wang S L, Qi H, Du H Y, Li Z F, Liang Q L, Lin Y Z. Effects of returning straw on the photosynthetic characteristics and growth of cotton seedlings in a saline coastal area. Cotton Sci, 2015, 27:248-253 (in Chinese with English abstract).
[8] 张文超, 王玉凤, 张翼飞, 徐晶宇, 吴琼, 陈天宇, 张鹏飞, 庞晨, 唐春双, 付健, 杨克军. 耕作方式对松嫩平原半干旱区土壤养分含量和玉米产量的影响. 作物杂志, 2017, (4):123-128.
Zhang W C, Wang Y F, Zhang Y F, Xu J Y, Wu Q, Chen T Y, Zhang P F, Pang C, Tang C S, Fu J, Yang K J. Effects of different tillage methods on changes of soil nutrients and grain yield of maize in semi-arid regions of Songnen Plain. Crops, 2017, (4):123-128 (in Chinese with English abstract).
[9] 姚强, 宫志远, 辛寒晓, 孙中涛, 张元祺, 董晓霞, 刘青, 刘盛林, 魏秀萍, 安森, 韩建东, 王梅, 李美. 盐碱地改良肥配方优化及对滨海旱作夏玉米的影响. 农学学报, 2020, 10(11):43-47.
Yao Q, Gong Z Y, Xin H X, Sun Z T, Zhang Y Q, Dong X X, Liu Q, Liu S L, Wei X P, An S, Han J D, Wang M, Li M. Optimization of improved fertilizer formula for saline-alkali land and its influence on coastal dryland summer maize. J Agric, 2020, 10(11):43-47 (in Chinese with English abstract).
[10] Pittelkow C, Liang X, Linquist B A, Groenigen K J V, Kessel C V. Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517:365-368.
doi: 10.1038/nature13809
[11] Lou Y, Xu M, Wang W, Sun X, Kai Z. Return rate of straw residue affects soil organic C sequestration by chemical fertilization. Soil Tillage Res, 2011, 113:70-73.
doi: 10.1016/j.still.2011.01.007
[12] 姜洁, 陈宏, 赵秀兰. 农作物秸杆改良土壤的方式与应用现状. 中国农学通报, 2008, 24(8):420-423.
Jiang J, Chen H, Zhao X L. The application actuality and methods of meliorated soil with crop stalks. Chin Agric Sci Bull, 2008, 24(8):420-423 (in Chinese with English abstract).
[13] 贾丽娜, 张俊丽, 高红兵, 刘滔, 韩宏, 杨东亚, 张嘉梅. 秸秆还田和抽穗期灌水对冬小麦生长性状及产量因子的效应研究. 农学学报, 2020, 10(11):32-36.
Jia L N, Zhang J L, Gao H B, Liu T, Han H, Yang D Y, Zhang J M. Straw returning and irrigation at heading stage: effects on growth traits and yield factors of winter wheat. J Agric, 2020, 10(11):32-36 (in Chinese with English abstract).
[14] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42:751-757.
doi: 10.3724/SP.J.1006.2016.00751
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016, 42:751-757 (in Chinese with English abstract).
[15] 张玉玲, 张玉龙, 黄毅, 邹洪涛, 信东旭, 张哲元. 辽西半干旱地区深松中耕对土壤养分及玉米产量的影响. 干旱地区农业研究, 2009, 27(4):167-170.
Zhang Y L, Zhang Y L, Huang Y, Zou H T, Xin D X, Zhang Z Y. Effect of deep loosening cultivation on soil nutrients and corn yield in semiarid region of Western Liaoning Province. Agric Res Arid Areas, 2009, 27(4):167-170 (in Chinese with English abstract).
[16] 许菁, 贺贞昆, 冯倩倩, 张亚运, 李晓莎, 许姣姣, 林祥, 韩惠芳, 宁堂原, 李增嘉. 耕作方式对冬小麦-夏玉米光合特性及周年产量形成的影响. 植物营养与肥料学报, 2017, 23:101-109.
Xu J, He Z K, Feng Q Q, Zhang Y Y, Li X S, Xu J J, Lin X, Han H F, Ning T Y, Li Z J. Effect of tillage method on photosynthetic characteristics and annual yield formation of winter wheat- summer maize cropping system. J Plant Nutr Fert, 2017, 23:101-109 (in Chinese with English abstract).
[17] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. pp 42-106.
Bao S D. Soil and Agro-chemistry Analysis. Beijing: China Agriculture Press, 2005. pp 42-106(in Chinese).
[18] 秦都林, 王双磊, 刘艳慧, 聂军军, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响. 作物学报, 2017, 43:1030-1042.
doi: 10.3724/SP.J.1006.2017.01030
Qin D L, Wang S L, Liu Y H, Nie J J, Zhao N, Mao L L, Song X L, Sun X Z. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil. Acta Agron Sin, 2017, 43:1030-1042 (in Chinese with English abstract).
[19] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
doi: 10.3724/SP.J.1006.2020.94074
Wang S H, Yang Z X, Shi J L Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract).
[20] 田平, 姜英, 孙悦, 马梓淇, 隋鹏祥, 梅楠, 齐华. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响. 中国生态农业学报, 2019, 27:100-108.
Tian P, Jiang Y, Sun Y, Ma Z Q, Sui P X, Mei N, Qi H. Effect of straw return methods on maize straw decomposition and soil nutrients contents. Chin J Eco-Agric, 2019, 27:100-108(in Chinese with English abstract).
[21] 杨帆, 董燕, 徐明岗, 包耀贤. 南方地区秸秆还田对土壤综合肥力和作物产量的影响. 应用生态学报, 2012, 23:3040-3044.
Yang F, Dong Y, Xu M G, Bao Y X. Effects of straw returning on the integrated soil fertility and crop yield in southern China. Chin J Appl Ecol, 2012, 23:3040-3944 (in Chinese with English abstract).
[22] 吴从稳, 陈小兵, 单晶晶, 尹春艳, 袁玲, 张立宾. 棉秆不同处理方式对滨海盐碱土理化性质和棉花产量的影响. 中国土壤与肥料, 2016, (5):96-104.
Wu C W, Chen X B, Shan J J, Yin C Y, Yuan L, Zhang L B. Effect of cotton straw returning after treatments on the physicochemical properties of coastal saline soil and the cotton yield. Soil Fert Sci China, 2016, (5):96-104 (in Chinese with English abstract).
[23] Wang Q, Lu C, Li H, He J, Sarker K K, Rasaily R G, Liang Z, Qiao X, Li H, Mchugh A D J. The effects of no-tillage with subsoiling on soil properties and maize yield: 12-year experiment on alkaline soils of Northeast China. Soil Tillage Res, 2014, 137:43-49.
doi: 10.1016/j.still.2013.11.006
[24] 迪力努尔·阿布拉, 黄建, 祁通, 冯耀祖, 王治国. 粉垄深松破障对新疆盐碱地土壤洗盐脱盐效果. 新疆农业科学, 2020, 57:1754-1761.
doi: 10.6048/j.issn.1001-4330.2020.09.021
Dilinur A, Huang J, Qi T, Feng Y Z, Wang Z G. Study on the effect of washing and desalting of soil in saline-alkali land of Xinjiang by the breaking of the barrier by the deep pine ridge. Xinjiang Agric Sci, 2020, 57:1754-1761 (in Chinese with English abstract).
[25] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014, 47:3359-3371.
Zhao Y L, Xue Z W, Guo H B, Mu X Y, Li C H. Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Sci Agric Sin, 2014, 47:3359-3371 (in Chinese with English abstract).
[26] Mavi M S, Singh B W. Movement of urea in soils as influenced by crop residues and organic manures. Agrochimica, 2007, 51:285-293.
[27] Chen G, Weil R R. Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res, 2011, 117:17-27.
doi: 10.1016/j.still.2011.08.001
[28] He J N, Shi Y, Yu Z W. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res, 2019, 187:182-193.
doi: 10.1016/j.still.2018.12.011
[29] 郭文君. 滨海盐碱地棉花秸秆还田和深松对棉花产量形成的生理基础研究. 山东农业大学硕士学位论文, 山东泰安, 2019.
Guo W J. Effects of Cotton Straw Returning and Subsoiling on Physiological Basis of Cotton Yield Formation in Coastal Saline Soil. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2005 (in Chinese with English abstract).
[30] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 立式深旋松耕对西北半干旱区土壤水分性状及马铃薯产量的影响. 草业学报, 2018, 27(12):156-165.
Zhang X C, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J. Effects of vertical rotary sub-soiling on soil water characteristics and potato tuber yield in a semi-arid area of northwest China. Acta Pratac Sin, 2018, 27(12):156-165 (in Chinese with English abstract).
[31] Watt M S, Clinton P W, Whitehead E, Richardson B, Mason E G, Leckie A C. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland-site. For Ecol Manage, 2003, 184:93-104.
doi: 10.1016/S0378-1127(03)00151-8
[32] 闫洪奎, 王欣然. 长期定位试验下秸秆还田配套深松对土壤性状及玉米产量的影响. 华北农学报, 2017, 32(增刊1):250-255.
Yan H K, Wang X R. The Effects of straw returned form a complete set of deep scarification to soil properties and maize yield under a long-term trial. Acta Agric Boreali-Sin, 2017, 32(S1):250-255 (in Chinese with English abstract).
[33] 张静, 温晓霞, 廖允成, 刘阳. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响. 植物营养与肥料学报, 2010, 16:612-619.
Zhang J, Wen X X, Liao Y C, Liu Y. Effects of different amount of maize straw returning on soil fertility and yield of winter wheat. J Plant Nutr Fert, 2010, 16:612-619 (in Chinese with English abstract).
[34] 展文洁, 刘剑钊, 梁尧, 袁静超, 张洪喜, 刘松涛, 蔡红光, 任军. 耕层构建方式对土壤理化性状、玉米养分累积及根系形态的影响. 玉米科学, 2020, 28(6):94-100.
Zhan W J, Liu J Z, Liang R, Yuan J C, Zhang H X, Liu S T, Cai H G, Ren J. Effects on soil physical and chemical properties, nutrient accumulation and root morphology in maize under different soil plough layer structure mode. J Maize Sci, 2020, 28(6):94-100 (in Chinese with English abstract).
[35] Mao L L, Guo W J, Yuan Y C, Qin D L, Wang S L, Nie J J, Zhao N, Song X L, Sun X Z. Cotton straw effects on yield and nutrient assimilation in coastal saline soil. Field Crops Res, 2019, 239:71-81.
doi: 10.1016/j.fcr.2019.05.008
[36] 陈义珍, 董合忠. 棉花衰老和熟相形成的生理生态与调控研究进展. 应用生态学报, 2016, 27:643-651.
Chen Y Z, Dong H Z. Eco-physiology and regulation of leaf senescence and maturity performance in cotton: a review. Chin J Appl Ecol, 2016, 27:643-651 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[10] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[11] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[12] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[13] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!