Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1645-1657.doi: 10.3724/SP.J.1006.2022.14107
• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HAN Shang-Ling1(), HUO Yi-Qiong1,2, LI Hui1, HAN Hua-Rui1, HOU Si-Yu1,2,3, SUN Zhao-Xia1,2,3, HAN Yuan-Huai1,2,3, LI Hong-Ying1,2,3,*()
[1] |
Williams C A, Grayer R J. Anthocyanins and other flavonoids. Nat Prod Rep, 2004, 21: 539-573.
doi: 10.1039/b311404j |
[2] |
Buer C S, Imin N, Djordjevic M A. Flavonoids: new roles for old molecules. J Integr Plant Biol, 2010, 52: 98-111.
doi: 10.1111/j.1744-7909.2010.00905.x |
[3] | Kozłowska A, Szostak-Wegierek D. Flavonoids-food sources and health benefits. Rocz Panstw Zakl Hig, 2014, 65: 79-85. |
[4] |
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael A J, Tohge T, Yamazaki M, Saito K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J, 2014, 77: 367-379.
doi: 10.1111/tpj.12388 |
[5] |
Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. J Exp Bot, 2019, 70: 397-423.
doi: 10.1093/jxb/ery392 |
[6] | Pan J Q, Tong X R, Guo B L. Progress of effects of light on plant flavonoids. China J Chin Mater Med, 2016, 41: 3897-3903. |
[7] |
Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176-185.
doi: 10.1016/j.tplants.2014.12.001 |
[8] | 刁现民.谷子种质资源的深度分析和研究利用. 见: 2017年中国作物学会学术年会摘要集, 保定: 中国作物学会, 2017. p 1. |
Diao X M. In-depth analysis and research utilization of foxtail millet germplasm resources. In: Abstract ppub of the Academic Annual Meeting of Chinese Crop Society in 2017Baoding: The Crop Science Society of China, 2017. p 1. (in Chinese) | |
[9] | 徐玖亮, 温馨, 刁现民, 张福锁, 李学贤. 我国主要谷类杂粮的营养价值及保健功能. 粮食与饲料工业, 2021, (1): 27-35. |
Xu J L, Wen X, Diao X M, Zhang F S, Li X X. Nutrition values and health effects of coarse cereals in China. Cereal Feed Ind, 2021, (1): 27-35. (in Chinese with English abstract) | |
[10] |
Zhang Y K, Gao J H, Qie Q R, Yang Y L, Hou S Y, Wang X C, Li X K, Han Y H. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life (Basel), 2021, 11: 578.
doi: 10.3390/life11060578 |
[11] | 鲜小华, 王嘉, 徐新福, 曲存民, 卢坤, 李加纳, 刘列钊. 整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点. 作物学报, 2018, 44: 1105-1113. |
Xian X H, Wang J, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. Mining yellow-seeded micro effect loci in B. napus by integrated GWAS and WGCNA analysis. Acta Agron Sin, 2018, 44: 1105-1113. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01105 |
|
[12] | 程旭.基于转录组和共表达网络分析的玫瑰类黄酮和萜类生物合成相关基因研究. 华中农业大学硕士学位论文,湖北武汉, 2016. |
Cheng X. Research of Flavonoids and Terpenoids Biosynthesis Genes Based on Transcriptome and Co-expression Network Analysis. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract) | |
[13] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7 |
[14] | Andrews S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. Bioinformatics, 2010, 26: 774-798. |
[15] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[16] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/NMETH.3317 |
[17] |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122 |
[18] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[19] | Fornes O, Castro-Mondragon J A, Khan A, van der Lee R, Zhang X, Richmond P A, Modi B P, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman W W, Mathelier A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res, 2020, 48: D87-D92. |
[20] |
Monniaux M, McKim S M, Cartolano M, Thévenon E, Parcy F, Tsiantis M, Hay A. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. New Phytol, 2017, 216: 549-561.
doi: 10.1111/nph.14419 pmid: 28098947 |
[21] |
Goslin K, Zheng B B, Serrano-Mislata A, Rae L, Ryan P T, Kwaśniewska K, Thomson B, Ó’Maoiléidigh D S, Madueño F, Wellmer F, Graciet E. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol, 2017, 174: 1097-1109.
doi: 10.1104/pp.17.00098 pmid: 28385730 |
[22] |
Han Y Y, Zhang C, Yang H B, Jiao Y L. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 6840-6845.
doi: 10.1073/pnas.1318532111 |
[23] |
Kim W C, Ko J H, Kim J Y, Kim J, Bae H J, Han K H. MYB 46directly regulates the gene expression of secondary wall- associated cellulose synthases in Arabidopsis. Plant J, 2013, 73: 26-36.
doi: 10.1111/j.1365-313x.2012.05124.x |
[24] |
Kim W C, Kim J Y, Ko J H, Kim J, Han K H. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall- associated cellulose synthases in Arabidopsis thaliana . J Plant Physiol, 2013, 170: 1374-1378.
doi: 10.1016/j.jplph.2013.04.012 |
[25] |
Zhong R, Ye Z H. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol, 2012, 53: 368-380.
doi: 10.1093/pcp/pcr185 |
[26] |
Wang X C, Wu J, Guan M L, Zhao C H, Geng P, Zhao Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J, 2020, 101: 637-652.
doi: 10.1111/tpj.14570 |
[27] |
Lazakis C M, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot, 2011, 62: 4833-4842.
doi: 10.1093/jxb/err129 pmid: 21730358 |
[28] |
Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158 |
[29] |
Mara C D, Huang T, Irish V F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 2010, 22: 690-702.
doi: 10.1105/tpc.109.065946 |
[30] |
Kim K C, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20: 2357-2371.
doi: 10.1105/tpc.107.055566 |
[31] |
Mao P, Duan M R, Wei C H, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol, 2007, 48: 833-842.
doi: 10.1093/pcp/pcm058 |
[32] |
Grunewald W, De Smet I, Lewis D R, Löfke C, Jansen L, Goeminne G, Vanden Bossche R, Karimi M, De Rybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu M C, Gheysen G, Muday G K, Friml J, Beeckman T. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA, 2012, 109: 1554-1559.
doi: 10.1073/pnas.1121134109 |
[33] |
Prát T, Hajný J, Grunewald W, Vasileva M, Molnár G, Tejos R, Schmid M, Sauer M, Friml J. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet, 2018, 14: e1007177.
doi: 10.1371/journal.pgen.1007177 |
[34] |
Guo X Y, Wang Y, Zhao P X, Xu P, Yu G H, Zhang L Y, Xiong Y, Xiang C B. AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa. New Phytol, 2019, 223: 1478-1488.
doi: 10.1111/nph.15861 |
[35] |
Cai X T, Xu P, Wang Y, Xiang C B. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis. J Integr Plant Biol, 2015, 57: 1017-1730.
doi: 10.1111/jipb.12347 |
[36] |
Yu L H, Wu S J, Peng Y S, Liu R N, Chen X, Zhao P, Xu P, Zhu J B, Jiao G L, Pei Y, Xiang C B. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J, 2016, 14: 72-84.
doi: 10.1111/pbi.12358 |
[37] |
Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu M C, Van Breusegem F. AtWRKY 15perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 20113-20118.
doi: 10.1073/pnas.1217516109 |
[38] |
Ge S T, Han X F, Xu X W, Shao Y M, Zhu Q K, Liu Y D, Du J, Xu J, Zhang S Q. WRKY15 suppresses tracheary element differentiation upstream of VND7 during xylem formation. Plant Cell, 2020, 32: 2307-2324.
doi: 10.1105/tpc.19.00689 |
[39] |
Gu Z Y, Men S Q, Zhu J, Hao Q, Tong N N, Liu Z A, Zhang H C, Shu Q Y, Wang L S. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia‘he xie’. J Exp Bot, 2019, 70: 4749-4762.
doi: 10.1093/jxb/erz245 |
[40] | 张丽玲, 郄倩茹, 罗韶凡, 牛文康, 朱喆标, 高雨柔, 李旭凯, 韩渊怀. 谷子12种黄酮类代谢物合成通路分析. 山西农业大学学报(自然科学版), 2020, 40(4): 10-18. |
Zhang L L, Qie Q R, Luo S F, Niu W K, Zhu Z B, Gao Y R, Li X K, Han Y H. Analysis of synthesis pathway of twelve flavonoid metabolites in foxtail millet. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(4): 10-18. (in Chinese with English abstract) | |
[41] |
Gonzalez A, Zhao M Z, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827.
doi: 10.1111/j.1365-313X.2007.03373.x |
[42] |
Mohamed H I, Latif H H. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants, 2017, 23: 545-556.
doi: 10.1007/s12298-017-0451-x |
[1] | WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925. |
[2] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[3] | JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668. |
[4] | KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708. |
[5] | GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634. |
[6] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[7] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[8] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[9] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[10] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[11] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[12] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[13] | HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630. |
[14] | YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069. |
[15] | GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813. |
|