Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1645-1657.doi: 10.3724/SP.J.1006.2022.14107

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet

HAN Shang-Ling1(), HUO Yi-Qiong1,2, LI Hui1, HAN Hua-Rui1, HOU Si-Yu1,2,3, SUN Zhao-Xia1,2,3, HAN Yuan-Huai1,2,3, LI Hong-Ying1,2,3,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Agricultural Bioengineer, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    3Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding in Minor Crops, Taigu 030801, Shanxi, China
  • Received:2021-06-22 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-01
  • Contact: LI Hong-Ying E-mail:1438989621@qq.com;hongying1964@163.com
  • Supported by:
    National Natural Science Foundation of China(31771810);National Natural Science Foundation of China(32070366);National Key Research and Development Project(2018YFD1000705-2);Scientific Research Project of Shanxi Province Outstanding Doctoral Work Award Fund(SXYBKY2019042);Shanxi Graduate Innovation Project(2020SY209);Cultivation Project of Excellent Scientific Research Achievements in Shanxi Universities(2019KJ020);Shanxi Agricultural Valley Construction Research Project(SXNGJSKYZX201702);and the Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding

Abstract:

Flavonoids are important secondary metabolites in plants and play significant roles in plant growth and development. They have antioxidant activity and are beneficial to human health. Foxtail millet is rich in nutrients, making it a healthy grain and popular among consumers. The crop is gaining more and more attention as a C4 model plant. However, there are few studies on the metabolic regulatory mechanism of flavonoids in foxtail millet. In this study, the panicles of flavonoid-rich variety JG21 and flavonoid-less variety NMB were analyzed on the flavonoid metabolomic profiles. Transcriptome sequencing was performed on the panicles of JG21 at different developmental stages. Transcription factors involved in regulating flavonoid metabolism were identified by weighted gene correlation network analysis (WGCNA). The expression patterns of these genes were verified by qRT-PCR. The results showed that the main flavonoid components enriched in the spikelets of foxtail millet were apigenin, vitexin, and naringenin, accounting for more than 79% of the total flavonoids. The flavonoid-related network of JG21 contained 38,921 genes, which were divided into 32 modules. Among them, the turquoise module, green module, and magenta module were significantly correlated with flavonoid metabolism. A total of 27 transcription factor families related to the regulation of flavonoid metabolism were identified by using differentially expressed genes related to flavonoid metabolism pathway as the hubs, and 11 transcription factors were obtained through promoter binding motif analysis. Pearson correlation analysis showed that 7 out of the 11 transcription factors might be involved in flavonoid metabolism, which were WRKY38, MYB4a, PI, WRKY15, WRKY62, MYB46, and WRKY23, respectively. The above results provide new candidate genes for studying the transcriptional regulation mechanism of flavonoids and lay a foundation for further investigation of the flavonoid metabolism regulation mechanism in foxtail millet.

Key words: foxtail millet, flavonoids, WGCNA, transcription factor

Fig. 1

Different developmental stages (S1, S3, and S5) of representative variety JG21 panicle S1: the panicles are bright green in appearance, and the inclusions are milky; S3: the panicles are yellow-green or light green in appearance, nutrients are accumulated, and the inclusions are solidified, embryo, and powdery inclusions can be separated; S5: appearance is dark yellow or off-white, palea husk becomes dry crisp, mature kernels."

Table S1

Primers used in this study"

基因
Gene
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
Seita.4G268200 ACCTCAAGGACGAACAGCAG TTCACGTTCAGGAGGTACGC
Seita.3G350800 CGGTGGATCAACTACCTCCG GCGATCTGAGACCACCTGTT
Seita.7G284800 CACCGAGGAAGAAGACGACC TTGATCTCGTTGTCCGTCCG
Seita.7G201000 GACCTGACGGGCATCAAGAA TTGGAGCACTTGTCGCACTT
Seita.3G236800 GAGCCTGAGTGCAGAGATCG ATCCTCGCCTTTCAGATGCC
Seita.6G239700 CAGAGGAGCACTCTGCTTCG AGGCCTCTGAAGTCGAGCAT
Seita.5G362000 AGGAGATCAACGGGCACAAG CTCCCCGTAGTAGGCGATCT
Seita.5G361900 AGCATCCCCAGAGAGCAAAC GTGGAAGCTGCACCTGTAGT
Seita.3G164900 TTCTGGACGACGGCTACAAG TCTTCACGTTGCACCCTTCC
Seita.7G203300 AGACGTGCACCGACAAATCT TGATGGCAAGAGTGCCACAT
Seita.1G154200 TCGACGATCTGATGAGCTGC CCATCATTTGCTGCCACGAC

Fig. 2

Flavonoids contents at different panicle development stages in foxtail millet Different lowercase letters above the bars mean significantly different at P < 0.05."

Table 1

Information on transcriptome sequencing"

样本名称
Sample name
总序列数量
Total reads
匹配序列数量
Mapped reads
匹配比例
Mapped ratio
(%)
GC含量
GC content (%)
Q30比例
Q30 ratio
(%)
基因间序列比例
Intergenic ratio
(%)
外显子序列比例
Exon ratio
(%)
内含子序列比例
Intron ratio
(%)
JG21-S1-1 47,381,498 43,109,022 90.98 53.30 93.50 9.95 86.55 3.50
JG21-S1-2 49,046,244 44,551,756 90.84 53.49 93.28 10.04 86.50 3.46
JG21-S1-3 46,450,810 41,656,468 89.68 53.54 94.01 10.22 86.35 3.43
JG21-S3-1 43,629,752 41,008,492 93.99 54.21 93.48 10.33 86.91 2.76
JG21-S3-2 51,156,392 48,064,045 93.96 54.11 93.70 10.31 86.91 2.78
JG21-S3-3 47,754,204 44,808,816 93.83 53.96 93.61 10.26 86.87 2.87
JG21-S5-1 45,693,728 38,155,584 83.50 53.90 93.63 11.09 85.30 3.61
JG21-S5-2 43,824,250 36,414,881 83.09 53.78 93.48 11.10 85.30 3.60
JG21-S5-3 46,573,564 38,830,068 83.37 53.93 93.52 11.13 85.32 3.55

Fig. 3

Clustering dendrogram of foxtail millet transcriptome samples based on their expression level Euclidean distance"

Fig. 4

Clustering dendrogram of foxtail millet transcripts with assigned module colors a: genes clustering analysis based on TOM-based dissimilarity. b: module divided by dynamic tree cut, different colors represented different modules."

Fig. 5

Identification of key modules related to the key flavonoids metabolites Each row corresponds to a module, and each column corresponds to a trait. The correlation coefficient and the corresponding P-value are shown in each cell."

Fig. S1

Expression analysis of flavonoid differentially expressed genes"

Table 2

Correlation between the differentially expressed genes related to flavonoid synthesis pathway and the contents of three flavonoids"

基因
Gene
牡荆素
Vitexin
柚皮素
Naringenin
芹菜素
Apigenin
CHIL_Seita.7G301600 0.933** 0.992** -0.436
F3H2_Seita.9G561700 0.391 -0.033 0.858**
F3'H6_Seita.2G219600 0.944** 0.987** -0.398
F3'H8_Seita.3G327200 0.921** 0.994** -0.464
ANR2_Seita.7G249100 0.862** 0.994** -0.567
CHSC2_Seita.8G140200 0.954** 0.984** -0.368
4CL1_Seita.6G093400 -0.688* -0.314 -0.642
4CL5_Seita.6G167900 0.974** 0.965** -0.280
4CL2_Seita.1G283300 0.663 0.917** -0.797*
PAL5_Seita.1G240600 0.928** 0.992** -0.442
PAL3_Seita.1G240400 0.919** 0.946** -0.382
PAL4_Seita.1G240500 0.951** 0.984** -0.373
PAL2_Seita.1G240300 0.956** 0.981** -0.352
PAL1_Seita.1G240200 0.953** 0.983** -0.367
PAL7_Seita.6G181000 0.971** 0.969** -0.296

Fig. 6

Regulatory network of flavonoids synthesis genes based on correlation module in foxtail millet Red circles indicate the differentially expressed flavonoid synthesis genes, blue squares indicate differentially expressed transcription factors that interact with flavonoid synthesis genes. A: turquoise module; B: green module; C: magenta module."

Table S2

Binding motif analysis of candidate transcription factors and the promoter of flavonoids genes"

转录因子
Transcription factor
结合基序
Motif ID
E
E-value
靶基因
Target gene
模板链
Strand
起始位置
Start
终止位置
End
p
p-value
q
q-value
匹配序列
Matched Sequence
Seita.4G268200 MA0940.1
(AP1)
3.23722E-30 Seita.7G301600_CHIL - 361 373 0.0000404 0.119 ATAAAAAAATAAA
Seita.7G301600_CHIL + 765 777 0.0000413 0.119 CTAAATAAGAAAA
Seita.7G301600_CHIL + 1004 1016 0.0000417 0.119 ATAAAAATATAAA
Seita.1G240300_PAL2 + 695 707 0.0000676 0.153 ACAGAAAAAAAAA
Seita.7G301600_CHIL - 367 379 0.0000686 0.153 ACTAAAATAAAAA
Seita.2G219600_F3'H6 + 307 319 0.0000880 0.156 ACGAAAAAGGGAA
Seita.3G350800 MA1040.1(MYB46) 3.80676E-67 Seita.7G301600_CHIL - 1790 1797 0.0000179 0.293 GTTAGGTA
Seita.7G301600_CHIL - 1685 1692 0.0000593 0.293 GGTAGGTG
Seita.8G140200_CHSC2 + 1015 1022 0.0000772 0.293 GTTTGGTA
Seita.7G284800 MA1039.1(MYB4a) 1.80221E-92 Seita.7G301600_CHIL - 1685 1692 0.0000121 0.096 GGTAGGTG
Seita.1G240300_PAL2 - 1435 1442 0.0000241 0.096 GGTTGGTG
Seita.1G240300_PAL2 + 93 100 0.0000241 0.096 GGTTGGTG
Seita.2G219600_F3'H6 + 682 689 0.0000241 0.096 GGTTGGTG
Seita.1G240300_PAL2 - 665 672 0.0000535 0.155 GGTTGGTA
Seita.2G219600_F3'H6 + 375 382 0.0000681 0.181 AGTAGGTG
Seita.1G240300_PAL2 + 905 912 0.0000975 0.183 AGTAGGTG
Seita.7G301600_CHIL + 1220 1227 0.0000975 0.183 AGTAGGTG
Seita.7G201000 MA0120.1(id1) 2.69525E-87 Seita.1G240300_PAL2 - 1350 1361 0.0000238 0.185 TGGTCCCTTCCG
Seita.7G301600_CHIL + 553 564 0.0000644 0.232 TTTCCCTTCTCT
Seita.1G240300_PAL2 - 490 501 0.0000684 0.232 TTTTCCCTCTCT
Seita.2G219600_F3'H6 - 308 319 0.0000694 0.232 TTCCCTTTTTCG
Seita.3G236800 MA0559.1(PI) 4.96687E-74 Seita.8G140200_CHSC2 + 1243 1256 0.00000786 0.123 ACAAAACAGGAAAA
Seita.7G301600_CHIL + 1630 1643 0.0000174 0.146 ACAAAACAGGAAAA
Seita.8G140200_CHSC2 + 1261 1274 0.0000234 0.146 ACAAAAATAGAATA
Seita.8G140200_CHSC2 + 499 512 0.0000354 0.172 CTAGAAGAAGAAGG
Seita.8G140200_CHSC2 + 1219 1232 0.0000809 0.172 AAGAATAAGGAAAG
Seita.8G140200_CHSC2 + 710 723 0.0000885 0.172 ACAGAACTAGAAAA
Seita.6G239700 MA1039.1(MYB4) 1.85497E-89 Seita.9G561700_F3H2 + 277 284 0.0000975 0.183 AGTTGGTG
Seita.5G362000 MA1084.1(WRKY38) 2.75933E-17 Seita.6G167900_4CL5 + 176 183 0.0000414 0.660 AGTTGACC
Seita.6G167900_4CL5 - 1533 1540 0.0000828 0.880 CATTGACC
Seita.5G361900 MA1091.1(WRKY62) 1.26504E-15 Seita.6G167900_4CL5 - 177 184 0.0000147 0.468 TGGTCAAC
Seita.3G164900 MA1080.1(WRKY23) 2.98528E-34 Seita.1G240500_PAL4 - 947 954 0.0000593 0.820 AGTCAAAG
Seita.7G203300 MA0990.1(EDT1) 0 Seita.6G167900_4CL5 + 662 671 0.0000346 0.366 AAATAAATGC
Seita.6G167900_4CL5 - 330 339 0.0000779 0.618 CTTTTAATGC
Seita.1G154200 MA1076.1(WRKY15) 3.76677E-45 Seita.1G240500_PAL4 - 955 964 0.0000855 0.907 GAGTCAACTC

Table 3

Function of the candidate transcription factors"

转录因子
Transcription factor
功能
Function
AP1 拟南芥: 参与花的形成[20-22]
Arabidopsis thaliana: participate in flower formation[20-22]
MYB46 拟南芥: 参与木质素生物合成[23-25]
Arabidopsis thaliana: participate in lignin biosynthesis[23-25]
MYB4a/b 拟南芥: 参与类黄酮生物合成[26]
Arabidopsis thaliana: participate in flavonoid biosynthesis[26]
id1 玉米: 参与开花过程[27-28]
Zea mays: participate in flowering process[27-28]
PI 拟南芥: 参与开花过程[29]
Arabidopsis thaliana: participate in flowering process[29]
WRKY38 拟南芥: 基础防御的负调节剂[30]
Arabidopsis thaliana: negative regulator of basal defense[30]
WRKY62 拟南芥: 基础防御的负调节剂; 参与水杨酸诱导的反应[30-31]
Arabidopsis thaliana: negative regulator of basal defense; participate in the response induced by salicylic acid[30-31]
WRKY23 拟南芥: 介导黄酮醇合成的局部调控, 调节生长素的转运[32]; 参与生长素介导的PIN蛋白的重排[33]
Arabidopsis thaliana: participate in local regulation of flavonol biosynthesis and auxin transport[32]; participate in auxin-mediated PIN polarity rearrangements[33]
EDT1 拟南芥: 增加陆地棉抗旱性和耐盐性[34-36]
Arabidopsis thaliana: increase drought and salt tolerance of upland cotton[34-36]
WRKY15 拟南芥: 调节植物的生长和盐/渗透胁迫反应[37]; 抑制木质部形成期间VND7上游的导管分子分化[38]
Arabidopsis thaliana: modulates plant growth and salt/osmotic stress responses[37]; suppresses tracheary element differentiation upstream of VND7 during xylem formation[38]

Table 4

Correlation between the expression levels of 11 transcription factors and the contents of three flavonoids"

转录因子
Transcription factors
JG21 NMB
牡荆素
Vitexin
柚皮素
Naringenin
芹菜素
Apigenin
牡荆素
Vitexin
柚皮素
Naringenin
芹菜素
Apigenin
WRKY38 0.948** 0.984** -0.378 0.595 0.715 -0.975**
EDT1 0.976** 0.962** -0.275 -0.983** -0.887* 0.993**
AP1 -0.922** -0.975** 0.422 0.927** 0.995** -0.717
MYB4a 0.926** 0.975** -0.401 0.879* 0.811* -0.991**
PI 0.886** 0.997** -0.534 0.805* 0.919* -0.889*
MYB4b -0.051 -0.472 0.994** 0.939** 0.984** -0.936**
WRKY15 0.980** 0.917** -0.136 0.738 0.801* -0.755
id1 -0.969** -0.973** 0.304 0.998** 0.998** -0.976**
WRKY62 0.946** 0.988** -0.392 0.497 0.773 -0.834*
MYB46 0.840** 0.986** -0.605 0.911** 0.915** -0.944**
WRKY23 0.983** 0.944** -0.228 0.874* 0.890* -0.937**
[1] Williams C A, Grayer R J. Anthocyanins and other flavonoids. Nat Prod Rep, 2004, 21: 539-573.
doi: 10.1039/b311404j
[2] Buer C S, Imin N, Djordjevic M A. Flavonoids: new roles for old molecules. J Integr Plant Biol, 2010, 52: 98-111.
doi: 10.1111/j.1744-7909.2010.00905.x
[3] Kozłowska A, Szostak-Wegierek D. Flavonoids-food sources and health benefits. Rocz Panstw Zakl Hig, 2014, 65: 79-85.
[4] Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael A J, Tohge T, Yamazaki M, Saito K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J, 2014, 77: 367-379.
doi: 10.1111/tpj.12388
[5] Gouot J C, Smith J P, Holzapfel B P, Walker A R, Barril C. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. J Exp Bot, 2019, 70: 397-423.
doi: 10.1093/jxb/ery392
[6] Pan J Q, Tong X R, Guo B L. Progress of effects of light on plant flavonoids. China J Chin Mater Med, 2016, 41: 3897-3903.
[7] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176-185.
doi: 10.1016/j.tplants.2014.12.001
[8] 刁现民.谷子种质资源的深度分析和研究利用. 见: 2017年中国作物学会学术年会摘要集, 保定: 中国作物学会, 2017. p 1.
Diao X M. In-depth analysis and research utilization of foxtail millet germplasm resources. In: Abstract ppub of the Academic Annual Meeting of Chinese Crop Society in 2017Baoding: The Crop Science Society of China, 2017. p 1. (in Chinese)
[9] 徐玖亮, 温馨, 刁现民, 张福锁, 李学贤. 我国主要谷类杂粮的营养价值及保健功能. 粮食与饲料工业, 2021, (1): 27-35.
Xu J L, Wen X, Diao X M, Zhang F S, Li X X. Nutrition values and health effects of coarse cereals in China. Cereal Feed Ind, 2021, (1): 27-35. (in Chinese with English abstract)
[10] Zhang Y K, Gao J H, Qie Q R, Yang Y L, Hou S Y, Wang X C, Li X K, Han Y H. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life (Basel), 2021, 11: 578.
doi: 10.3390/life11060578
[11] 鲜小华, 王嘉, 徐新福, 曲存民, 卢坤, 李加纳, 刘列钊. 整合GWAS和WGCNA分析挖掘甘蓝型油菜黄籽微效作用位点. 作物学报, 2018, 44: 1105-1113.
Xian X H, Wang J, Xu X F, Qu C M, Lu K, Li J N, Liu L Z. Mining yellow-seeded micro effect loci in B. napus by integrated GWAS and WGCNA analysis. Acta Agron Sin, 2018, 44: 1105-1113. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01105
[12] 程旭.基于转录组和共表达网络分析的玫瑰类黄酮和萜类生物合成相关基因研究. 华中农业大学硕士学位论文,湖北武汉, 2016.
Cheng X. Research of Flavonoids and Terpenoids Biosynthesis Genes Based on Transcriptome and Co-expression Network Analysis. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[13] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167-1178.
doi: 10.1038/s41477-020-0747-7
[14] Andrews S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. Bioinformatics, 2010, 26: 774-798.
[15] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170
[16] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/NMETH.3317
[17] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 2015, 33: 290-295.
doi: 10.1038/nbt.3122
[18] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[19] Fornes O, Castro-Mondragon J A, Khan A, van der Lee R, Zhang X, Richmond P A, Modi B P, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman W W, Mathelier A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res, 2020, 48: D87-D92.
[20] Monniaux M, McKim S M, Cartolano M, Thévenon E, Parcy F, Tsiantis M, Hay A. Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta. New Phytol, 2017, 216: 549-561.
doi: 10.1111/nph.14419 pmid: 28098947
[21] Goslin K, Zheng B B, Serrano-Mislata A, Rae L, Ryan P T, Kwaśniewska K, Thomson B, Ó’Maoiléidigh D S, Madueño F, Wellmer F, Graciet E. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol, 2017, 174: 1097-1109.
doi: 10.1104/pp.17.00098 pmid: 28385730
[22] Han Y Y, Zhang C, Yang H B, Jiao Y L. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 6840-6845.
doi: 10.1073/pnas.1318532111
[23] Kim W C, Ko J H, Kim J Y, Kim J, Bae H J, Han K H. MYB 46directly regulates the gene expression of secondary wall- associated cellulose synthases in Arabidopsis. Plant J, 2013, 73: 26-36.
doi: 10.1111/j.1365-313x.2012.05124.x
[24] Kim W C, Kim J Y, Ko J H, Kim J, Han K H. Transcription factor MYB46 is an obligate component of the transcriptional regulatory complex for functional expression of secondary wall- associated cellulose synthases in Arabidopsis thaliana . J Plant Physiol, 2013, 170: 1374-1378.
doi: 10.1016/j.jplph.2013.04.012
[25] Zhong R, Ye Z H. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol, 2012, 53: 368-380.
doi: 10.1093/pcp/pcr185
[26] Wang X C, Wu J, Guan M L, Zhao C H, Geng P, Zhao Q. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J, 2020, 101: 637-652.
doi: 10.1111/tpj.14570
[27] Lazakis C M, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot, 2011, 62: 4833-4842.
doi: 10.1093/jxb/err129 pmid: 21730358
[28] Coneva V, Guevara D, Rothstein S J, Colasanti J. Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot, 2012, 63: 5079-5092.
doi: 10.1093/jxb/ers158
[29] Mara C D, Huang T, Irish V F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 2010, 22: 690-702.
doi: 10.1105/tpc.109.065946
[30] Kim K C, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20: 2357-2371.
doi: 10.1105/tpc.107.055566
[31] Mao P, Duan M R, Wei C H, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol, 2007, 48: 833-842.
doi: 10.1093/pcp/pcm058
[32] Grunewald W, De Smet I, Lewis D R, Löfke C, Jansen L, Goeminne G, Vanden Bossche R, Karimi M, De Rybel B, Vanholme B, Teichmann T, Boerjan W, Van Montagu M C, Gheysen G, Muday G K, Friml J, Beeckman T. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA, 2012, 109: 1554-1559.
doi: 10.1073/pnas.1121134109
[33] Prát T, Hajný J, Grunewald W, Vasileva M, Molnár G, Tejos R, Schmid M, Sauer M, Friml J. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet, 2018, 14: e1007177.
doi: 10.1371/journal.pgen.1007177
[34] Guo X Y, Wang Y, Zhao P X, Xu P, Yu G H, Zhang L Y, Xiong Y, Xiang C B. AtEDT1/HDG11 regulates stomatal density and water-use efficiency via ERECTA and E2Fa. New Phytol, 2019, 223: 1478-1488.
doi: 10.1111/nph.15861
[35] Cai X T, Xu P, Wang Y, Xiang C B. Activated expression of AtEDT1/HDG11 promotes lateral root formation in Arabidopsis mutant edt1 by upregulating jasmonate biosynthesis. J Integr Plant Biol, 2015, 57: 1017-1730.
doi: 10.1111/jipb.12347
[36] Yu L H, Wu S J, Peng Y S, Liu R N, Chen X, Zhao P, Xu P, Zhu J B, Jiao G L, Pei Y, Xiang C B. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J, 2016, 14: 72-84.
doi: 10.1111/pbi.12358
[37] Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu M C, Van Breusegem F. AtWRKY 15perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2012, 109: 20113-20118.
doi: 10.1073/pnas.1217516109
[38] Ge S T, Han X F, Xu X W, Shao Y M, Zhu Q K, Liu Y D, Du J, Xu J, Zhang S Q. WRKY15 suppresses tracheary element differentiation upstream of VND7 during xylem formation. Plant Cell, 2020, 32: 2307-2324.
doi: 10.1105/tpc.19.00689
[39] Gu Z Y, Men S Q, Zhu J, Hao Q, Tong N N, Liu Z A, Zhang H C, Shu Q Y, Wang L S. Chalcone synthase is ubiquitinated and degraded via interactions with a RING-H2 protein in petals of Paeonia‘he xie’. J Exp Bot, 2019, 70: 4749-4762.
doi: 10.1093/jxb/erz245
[40] 张丽玲, 郄倩茹, 罗韶凡, 牛文康, 朱喆标, 高雨柔, 李旭凯, 韩渊怀. 谷子12种黄酮类代谢物合成通路分析. 山西农业大学学报(自然科学版), 2020, 40(4): 10-18.
Zhang L L, Qie Q R, Luo S F, Niu W K, Zhu Z B, Gao Y R, Li X K, Han Y H. Analysis of synthesis pathway of twelve flavonoid metabolites in foxtail millet. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(4): 10-18. (in Chinese with English abstract)
[41] Gonzalez A, Zhao M Z, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827.
doi: 10.1111/j.1365-313X.2007.03373.x
[42] Mohamed H I, Latif H H. Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants, 2017, 23: 545-556.
doi: 10.1007/s12298-017-0451-x
[1] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[2] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[3] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[4] KE Dan-Xia, HUO Ya-Ya, LIU Yi, LI Jin-Ying, LIU Xiao-Xue. Functional analysis of GmTGA26 gene under salt stress in soybean [J]. Acta Agronomica Sinica, 2022, 48(7): 1697-1708.
[5] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
[6] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[7] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[8] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[9] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[10] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[11] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[12] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[13] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[14] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[15] GE Min, WANG Yuan-Cong, NING Li-Hua, HU Meng-Mei, SHI Xi, ZHAO Han. Function analysis of nitrogen-responsive transcription factor ZmNLP5 affecting root growth in maize [J]. Acta Agronomica Sinica, 2021, 47(5): 807-813.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .