Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 12-23.doi: 10.3724/SP.J.1006.2023.13064

• REVIEWS • Previous Articles     Next Articles

Physiological mechanism and regulation effect of low light on maize yield formation

SUN Zhi-Chao(), ZHANG Ji-Wang()   

  1. Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2021-11-15 Accepted:2022-08-01 Online:2022-08-11 Published:2022-11-08
  • Contact: ZHANG Ji-Wang E-mail:3148755134@qq.com;jwzhang@sdau.edu.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-21);Shandong Province Key Research and Development Project(2021LZGC014-2);Shandong Central Guiding the Local Science and Technology Development(YDZX20203700002548)

Abstract:

As for global climate change, insufficient light during the growth periods has become one of the main factors restricting maize yield, increasing the risk of global food production and nutritional security. In this study, based on the previous experiments, we explored the physiological mechanism of low light on maize yield formation from the aspects of photosynthetic performance, nutrient absorption characteristics, grain formation, and filling characteristics. Under low light stress, the light harvesting ability of leaves was reduced, the stromal and grana thylakoids disintegrated, the activities of related enzymes were reduced, the photosystem was damaged, and the carbon assimilation ability was reduced, which further inhibited root development, significantly affected root morphology and function, and was not conducive to nutrient absorption and metabolism. Due to the insufficient nutrition supply, the development of tassel and ear was blocked, the morphological function of pollen and filaments was affected, resulting in low flower fertilization rate and decreased grain number per ear. Low light also reduced the number of endosperm cells— “sink” capacity, the structure and function of the endosperm transfer cells were affected, the endogenous hormonal balance was broken, sucrose, starch metabolism related enzyme activity decreased, internodes vascular bundle number and area reduced, transport and transformation ability were limited, eventualy led to the poor state of starch and the decreased grain weight significantly. Therefore, to alleviate the influence of low light stress on maize yield formation, it is urgent to establish indexes for systematic evaluation of shade tolerance varieties, accelerate the cultivation of new shade-tolerant varieties with high light efficiency by modern technology, and adopt cultivation measures such as increasing nitrogen fertilizer application, removing top leaves, spraying growth regulator and foliar fertilizer to improve maize yield. In the future, more attention should focus on root-shoot coordination and deeply explore the mechanism of low light stress, so as to provide the theoretical basis for the establishment of key techniques of maize resistance to yield increase.

Key words: low-light stress, artificial shading, maize, yield, shade tolerance, physiological mechanism, regulation effect

Fig. 1

Sunshine hours from June to October (1961-2018 ) and the total solar radiation (1961-2020)"

Fig. 2

Artificial shading method to simulate low light stress in field"

Fig. 3

Comparison of root, stem, leaf, ear, tassel, and pollen of maize under natural and low light conditions a, d: the number of starch grains in pollen; b, c: scanning structure of pollen appearance (800×); e, h: differentiation process of tassel and ear; f, g: ears; i, j: leaf cross-section (200×); A, D: distribution of Chloroplasts in mesophyll cells (2500×); B, C: ultrastructure of mesophyll cells (25,000×); E, H: the structure of central vascular bundle of the third stem segment (100×); F, G: the structure of small vascular bundle of the third stem segment (100×); I, J: root cross-section (100×). EP: epidermal cell; MT: mesophyll cell; N: nucleus; Ch: chloroplast; SL: stroma lamella; GL: grana lamella; Mi: mitochondria; CW: cell wall; CM: cytomembrane. Some images in this picture were quoted from Gao et al.[12], Wang et al.[25], Cui et al.[40], Zhou et al.[43], and Du et al.[60]."

Table 1

Loss of maize yield in different shading stages and shading rates"

品种
Variety name
遮光率
Shading rate (%)
遮光时期
Shading stage
产量损失
Yield loss (%)
参考文献
Reference
掖单22 Yedan 22
掖单3638 Yedan 3638
豫玉2号 Yuyu 2
丹玉1 Danyu 1
50 苗期 From seedling to jointing stage
穗期 From jointing to flowering stage
花粒期 From flowering to maturity stage
7
22
34
李潮海等[61]
Li et al.[61]
农大108 Nongda 108
掖单13号 Yedan 13
50
90
苗期 From seedling to jointing stage
穗期From jointing to flowering stage
花粒期From flowering to maturity stage
21
51
79
张吉旺等[6]
Zhang et al.[6]
费玉3号 Feiyu 3
泰玉2号 Taiyu 2
高油115 Gaoyou 115
55 授粉后1~14 d 1-14 days after pollination
授粉后15~28 d 15-28 days after pollination
授粉后29~42 d 29-42 days after pollination
11
7
3
贾士芳等[39]
Jia et al.[39]
DK752×DK752
DK752×5MG
45
85
籽粒生长早期 Early grain growth stage
籽粒生长晚期 Late grain growth stage
籽粒生长早期+晚期 Grain growth stage
67
19
87
Tanaka et al.[62]
登海605 Denghai 605
郑单958 Zhengdan 958
75 授粉后4 d 4 days after pollination
授粉后8 d 8 days after pollination
授粉后12 d 12 days after pollination
授粉-成熟期 From pollination to maturity
6
19
23
36
Shen et al.[63]
先玉335 Xianyu 335
郑单958 Zhengdan 958
登海618 Denghai 618
50
70
85
三叶期-成熟期
From three-leaf stage to maturity
18
35
73
Guo et al.[64]

Fig. 4

Physiological mechanism that may affect maize yield formation under low light condition"

[1] Chen X X, Wang L C, Niu Z G, Zhang M, Li C A, Li J R. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric For Meteorol, 2020, 282-283: 107867.
doi: 10.1016/j.agrformet.2019.107867
[2] Earley E B, Miller R J, Reichert G L, Hageman R H, Seif R D. Effect of shade on maize production under field conditions. Crop Sci, 1966, 6: 1-7.
doi: 10.2135/cropsci1966.0011183X000600010001x
[3] Struik P C. Effects of short and long shading during different stages of growth on development, productivity and quality of forage maize (Zea mays L.). Neth J Agric Sci, 1983, 31: 101-124.
[4] Kiniry J R, Ritchie J T. Shade-sensitive interval of kernel number of maize. Agron J, 1985, 77: 711-715.
doi: 10.2134/agronj1985.00021962007700050012x
[5] 赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察. 中国农业科学, 1990, 23(4): 28-34.
Zhao J R, Chen G P. Effects of shading treatment at different stages of plant development on grain production of corn (Zea mays L.) and observations of tip kernel abortion. Sci Agric Sin, 1990, 23(4): 28-34. (in Chinese with English abstract)
[6] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 遮荫对夏玉米产量及生长发育的影响. 应用生态学报, 2006, 17: 657-662.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading on the growth, development and grain yield of summer maize. Chin J Appl Ecol, 2006, 17: 657-662. (in Chinese with English abstract)
[7] Takayuki Y, Osamu U. Structural and photosynthetic re- acclimation to low light in C4 maize leaves that developed under high light. Ann Bot, 2019, 124: 437-445.
doi: 10.1093/aob/mcz092
[8] 袁刘正. 玉米自交系耐阴性评价体系及遗传特征研究. 河南农业大学博士学位论文, 河南郑州, 2017.
Yuan L Z. Study on Shading Evaluation System and Genetic Characteristics of Maize Inbred Lines. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2017. (in Chinese with English abstract)
[9] Schulz V S, Munz S, Stolzenburg K, Hartung J, Weisenburger S, Mastel K, Möller K, Claupein W, Graeff-Hönninger S. Biomass and biogas yield of maize (Zea mays L.) grown under artificial shading. Agricuture, 2018, 8: 178.
[10] Wu H Y, Liu L A, Shi L, Zhang W F, Jiang C D. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosyn Res, 2021, 150: 313-326.
doi: 10.1007/s11120-021-00851-1
[11] Yang Y S, Guo X X, Liu H F, Liu G Z, Liu W M, Ming B, Xie R Z, Wang K R, Hou P, Li S K. The effect of solar radiation changes on the maize yield gap from the perspectives of dry matter accumulation and distribution. J Integr Agric, 2021, 20: 482-493.
doi: 10.1016/S2095-3119(20)63581-X
[12] 高佳, 崔海岩, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018, 29: 883-890.
doi: 10.13287/j.1001-9332.201803.021
Gao J, Cui H Y, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L.). Chin J Appl Ecol, 2018, 29: 883-890. (in Chinese with English abstract)
[13] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33: 216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007, 33: 216-222 (in Chinese with English abstract).
[14] 王秀萍. 不同基因型玉米对弱光胁迫的若干生理响应及其分子基础研究. 河南农业大学博士学位论文, 河南郑州, 2012.
Wang X P. Physiological Responses to Low-light Stress and Molecular Basis of Different Maize (Zea mays L.) Genotypes. PhD Dissertation of Shenyang Agricultural University, Zhengzhou, Henan, China, 2012. (in Chinese with English abstract)
[15] 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34: 1439-1447.
doi: 10.3773/j.issn.1005-264x.2010.12.010
Jia S F, Li C F, Dong S T, Zhang J W. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chin J Plant Ecol, 2010, 34: 1439-1447. (in Chinese with English abstract)
[16] 任作利, 王振华, 张继峯, 杨文杰, 陈潇洁, 贾哲诚. 弱光胁迫对滴灌玉米叶绿素荧光及生长特性的影响. 玉米科学, 2020, 28(4): 96-104.
Ren Z L, Wang Z H, Zhang J F, Yang W J, Chen X J, Jia Z C. Effects of weak light stress on chlorophyll fluorescence and growth characteristics of drip-irrigated maize. J Maize Sci, 2020, 28(4): 96-104. (in Chinese with English abstract)
[17] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478-485.
doi: 10.3724/SP.J.1006.2013.00478
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013, 39: 478-485. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00478
[18] Chollet R, Vidal J, O’Leary M H. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 273-298.
doi: 10.1146/annurev.arplant.47.1.273
[19] 吴新军, 黄良民, 苏强. 海洋浮游植物Rubisco酶的作用及其影响因素研究进展. 生态科学, 2014, 33(1): 166-172.
Wu X J, Huang L M, Su Q. Advances in function and influencing factors of rubisco in marine phytoplankton. Ecol Sci, 2014, 33(1): 166-172. (in Chinese with English abstract)
[20] Sharwood R E, Sonawane B V, Ghannoum O. Photosynthetic flexibility in maize exposed to salinity and shade. J Exp Bot, 2014, 65: 3715-3724.
doi: 10.1093/jxb/eru130 pmid: 24692650
[21] Souza R P, Machado E C, Silva J, Lagôa A, Silveira J. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot, 2004, 51: 45-56.
doi: 10.1016/S0098-8472(03)00059-5
[22] Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol, 2012, 15: 282-292.
doi: 10.1016/j.pbi.2012.03.016 pmid: 22541711
[23] Gao J, Zhao B, Dong S T, Liu P, Ren B Z, Zhang J W. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable isotope tracer in the field. Front Plant Sci, 2017, 8: 1821.
doi: 10.3389/fpls.2017.01821
[24] 吴亚男. 不同玉米品种耐阴性评价及高产群体结构. 沈阳农业大学博士学位论文, 辽宁沈阳, 2014.
Wu Y N. Shade-endurance among Different Maize Varieties and High-yielding Population Structure. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2014. (in Chinese with English abstract)
[25] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构, 生理特性和产量的影响. 中国农业科学, 2020, 52: 3479-3495.
Wang Q, Zhao X Y, Liu D Y, Yan Z H, Li H P, Dong P F, Li C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Sci Agric Sin, 2020, 52: 3479-3495. (in Chinese with English abstract)
[26] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照强度对夏玉米根系生长和产量的影响. 中国农业科学, 2017, 50: 2104-2113.
Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Effect of different light intensities on root characteristics and grain yield of summer maize (Zea mays L.). Sci Agric Sin, 2017, 50: 2104-2113. (in Chinese with English abstract)
[27] Schubert S, Mengel K. Effect of light intensity on proton extrusion by roots of intact maize plants. Physiol Plant, 1986, 67: 614-619.
doi: 10.1111/j.1399-3054.1986.tb05065.x
[28] Tang W, Cheng W X, Zeng H, Zhu B. Light intensity controls rhizosphere respiration rate and rhizosphere priming effect of soybean and sunflower. Rhizosphere, 2019, 9: 97-105.
doi: 10.1016/j.rhisph.2018.12.002
[29] 崔海岩, 靳立斌, 李波, 董树亭, 刘鹏, 赵斌, 张吉旺. 遮阴对夏玉米干物质积累及养分吸收的影响. 应用生态学报, 2013, 24: 3099-3105.
Cui H Y, Jin L B, Li B, Dong S T, Liu P, Zhao B, Zhang J W. Effects of shading on dry matter accumulation and nutrient absorption of summer maize. Chin J Appl Ecol, 2013, 24: 3099-3105. (in Chinese with English abstract)
[30] Kravkaz Kuscu I S. Changing of soil properties and urease-catalase enzyme activity depending on plant type and shading. Environ Monit Assess, 2019, 191: 178.
doi: 10.1007/s10661-019-7304-8 pmid: 30796593
[31] 杨东, 段留生, 谢华安, 郑家团, 黄庭旭. 花前光照亏缺对水稻根际土壤微生物生态效应的影响. 科技导报, 2011, 29(7): 26-30.
Yang D, Duan L S, Xie H A, Zheng J T, Huang T X. Ecological effect of pre-flowering light deficit on the rhizosphere soil microbes of rice. Sci Technol Rev, 2011, 29(7): 26-30. (in Chinese with English abstract)
[32] Zhou T, Wang L, Sun X, Wang X C, Chen Y L, Rengel Z, Liu W G, Yang W Y. Light intensity influence maize adaptation to low P stress by altering root morphology. Plant Soil, 2020, 447: 183-197.
doi: 10.1007/s11104-019-04259-8
[33] Yu P, He X M, Baer M, Beirinckx S, Tian T, Moya Y A T, Zhang X C, Deichmann M, Frey F P, Bresgen V, Li C J, Razavi B S, Schaaf G, Wirén NV, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X P, Hochholdinger F. Plant flavones enrich rhizosphere oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants, 2021, 7: 481-499.
doi: 10.1038/s41477-021-00897-y pmid: 33833418
[34] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Leaf-nitrogen status affects grain yield formation through modification of spike differentiation in maize. Field Crops Res, 2021, 271: 108238.
doi: 10.1016/j.fcr.2021.108238
[35] Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop J, 2022, 10: 478-489.
doi: 10.1016/j.cj.2021.08.001
[36] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮阴对夏玉米淀粉合成关键酶活性的影响. 作物学报, 2008, 34: 1470-1474.
doi: 10.3724/SP.J.1006.2008.01470
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading in field on key enzymes involved in starch synthesis of summer maize. Acta Agron Sin, 2008, 34: 1470-1474. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01470
[37] Wang G Q, Zhang J H. Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying. Environ Exp Bot, 2020, 178: 104165.
doi: 10.1016/j.envexpbot.2020.104165
[38] Yang Y S, Guo X X, Liu G Z, Liu W M, Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Solar radiation effects on dry matter accumulations and transfer in maize. Front Plant Sci, 2021, 12: 727134.
doi: 10.3389/fpls.2021.727134
[39] 贾士芳, 李从锋, 董树亭, 张吉旺. 花后不同时期遮光对玉米粒重及品质影响的细胞学研究. 中国农业科学, 2010, 43: 911-921.
Jia S F, Li C F, Dong S T, Zhang J W. Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Sci Agric Sin, 2010, 43: 911-921. (in Chinese with English abstract)
[40] 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45: 3497-3505.
Cui H Y, Jin L B, Li B, Zhang J W, Zhao B, Dong S T, Liu P. Effects of shading on stalks morphology, structure and lodging of summer maize in field. Sci Agric Sin, 2012, 45: 3497-3505. (in Chinese with English abstract)
[41] Wang G Q, Hao S S, Gao B, Chen M X, Liu Y G, Yang J C, Ye N H, Zhang J H. Regulation of gene expression involved in the remobilization of rice straw carbon reserves results from moderate soil drying during grain filling. Plant J, 2020, 101: 604-618.
doi: 10.1111/tpj.14565
[42] Yuan L Z, Tang J H, Liu J Y, Song H, Zhang M B, Li H P, Li C H. Differential miRNA expression in maize ear subjected to shading tolerance. Acta Physiol Plant, 2016, 38: 80.
doi: 10.1007/s11738-016-2094-x
[43] Cui H Y, Camberato J J, Jin L B, Zhang J W. Effects of shading on spike differentiation and grain yield formation of summer maize in the field. Int J Biometeorol, 2015, 59: 1189-1200.
doi: 10.1007/s00484-014-0930-5 pmid: 25380975
[44] 周卫霞, 王秀萍, 穆心愿, 李潮海. 弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响. 作物学报, 2013, 39: 2065-2073.
doi: 10.3724/SP.J.1006.2013.02065
Zhou W X, Wang X P, Mu X Y, Li C H. Effects of low-light stress on male and female flower development and pollination and fructification ability of different maize (Zea mays L.) genotypes. Acta Agron Sin, 2013, 39: 2065-2073 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.02065
[45] Deng F, Zeng Y L, Li Q P, He C Y, Li B, Zhu Y Y, Zhou X, Yang F, Zhong X Y, Wang L, Chen H, Zhou W, Ren W J. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress. Field Crops Res, 2021, 273: 108291.
doi: 10.1016/j.fcr.2021.108291
[46] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452-1461.
Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452-1461. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01452
[47] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44: 2673-2682.
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Sci Agric Sin, 2011, 44: 2673-2682. (in Chinese with English abstract)
[48] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315-323.
pmid: 11553759
[49] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[50] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48: 2366-2376.
Zhang Z B, Qu X Y, Yu N N, Ren B Z, Liu P, Zhao B, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agron Sin, 2022, 48: 2366-2376. (in Chinese with English abstract)
[51] 孙庆泉, 吴元奇, 胡昌浩, 董树亭, 荣廷昭, 张颖. 不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性. 作物学报, 2005, 31: 612-618.
Sun Q Q, Wu Y Q, Hu C H, Dong S T, Rong T Z, Zang Y. Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize. Acta Agron Sin, 2005, 31: 612-618. (in Chinese with English abstract)
[52] Hiyane R, Shinichi H, Tang A C, Boyer J S. Sucrose feeding reverses shade-induced kernel losses in maize. Ann Bot, 2010, 106: 395-403.
doi: 10.1093/aob/mcq132
[53] 付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系. 中国水稻科学, 2012, 26: 302-310.
Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice. Chin J Rice Sci, 2012, 26: 302-310. (in Chinese with English abstract)
[54] Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions. Int J Biometeorol, 2018, 62: 2131-2138.
doi: 10.1007/s00484-018-1613-4
[55] Zhou J L, Tian L, Wang S X, Li H P, Zhao Y L, Zhang M B, Wang X L, An P P, Li C H. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize. Front Plant Sci, 2021, 12: 778717.
doi: 10.3389/fpls.2021.778717
[56] 史建国, 崔海岩, 赵斌, 董树亭, 刘鹏, 张吉旺. 花粒期光照对夏玉米产量和籽粒灌浆特性的影响. 中国农业科学, 2013, 46: 4427-4434.
Shi J G, Cui H Y, Zhao B, Dong S T, Liu P, Zhang J W. Effect of light on yield and characteristics of grain-filling of summer maize from flowering to maturity. Sci Agric Sin, 2013, 46: 4427-4434. (in Chinese with English abstract)
[57] 岳杨, 郑永照, 王提江, 倪玉春, 董本春, 高玮, 康恒, 孙世伟. 玉米花丝生长发育规律及花丝活力的相关研究. 安徽农学通报, 2013, 19(18): 16.
Yue Y, Zheng Y Z, Wang T J, Ni Y C, Dong B C, Gao W, Kang H, Sun S W. Study on the growth and development of maize filament and its vigor. Anhui Agric Sci Bull, 2013, 19(18): 16 (in Chinese without English abstract).
[58] Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and post anthesis development of spikelets in rice. Plant Growth Regul, 2003, 41: 185-195.
doi: 10.1023/B:GROW.0000007503.95391.38
[59] Fu J, Xu Y J, Lu C, Yuan L M, Wang Z Q, Yang J C. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice. Rice Sci, 2013, 20: 120-128.
doi: 10.1016/S1672-6308(13)60116-X
[60] 杜成凤, 李潮海, 刘天学, 赵亚丽. 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011, 31: 6633-6640.
Du C F, Li C H, Liu T X, Zhao Y L. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin, 2011, 31: 6633-6640. (in Chinese with English abstract)
[61] 李潮海, 栾丽敏, 尹飞, 王群, 赵亚丽. 弱光胁迫对不同基因型玉米生长发育和产量的影响. 生态学报, 2005, 25: 824-830.
Li C H, Luan L M, Yin F, Wang Q, Zhao Y L. Effects of light stress at different stages on the growth and yield of different maize genotypes (Zea mays L.). Acta Ecol Sin, 2005, 25: 824-830. (in Chinese with English abstract)
[62] Tanaka W, Maddonni G Á. Maize kernel oil and episodes of shading during the grain-filling period. Crop Sci, 2009, 49: 2187-2197.
doi: 10.2135/cropsci2009.05.0238
[63] Shen S, Li B B, Deng T, Xiao Z D, Chen X M, Hu H, Zhang B C, Wu G, Li F, Zhao X, Liang X G, Mi G H, Zhou S L. The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize. Plant Growth Regul, 2020, 91: 101-111.
doi: 10.1007/s10725-020-00590-8
[64] Guo X X, Yang Y S, Liu H F, Liu G Z, Liu W M, Wang Y H, Zhao R L, Ming B, Xie R Z, Wang K R, Hou P, Xiao C H, Li S K. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them. Crop Sci, 2020, 61: 1414-1425.
doi: 10.1002/csc2.20416
[65] Su Z E, Liu Z J, Bai F, Zhang Z T, Sun S, Huang Q W, Liu T, Liu X Q, Yang X G. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in northeast China. J Integr Agric, 2021, 20: 371-382.
doi: 10.1016/S2095-3119(20)63359-7
[66] 黄鑫慧, 高佳, 任佰朝, 赵斌, 刘鹏, 张吉旺. 植酶Q9对大田遮阴夏玉米产量形成的影响. 中国农业科学, 2019, 52: 3309-3322.
Huang X H, Gao J, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of phytase Q9 on yield formation of summer maize shading in the field. Sci Agric Sin, 2019, 52: 3309-3322. (in Chinese with English abstract)
[67] 黄鑫慧, 任佰朝, 赵斌, 刘鹏, 张吉旺. 植酶Q9对大田遮阴夏玉米产量和衰老特性的调控作用. 应用生态学报, 2020, 31: 3433-3444.
doi: 10.13287/j.1001-9332.202010.024
Huang X H, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of Phytase Q9 on the yield and senescence characteristics of summer maize shaded in the field. Chin J Appl Ecol, 2020, 31: 3433-3444. (in Chinese with English abstract)
[68] 陈均治, 王懿茜, 解君, 李香云, 付筱, 聂纪鲁, 朱伟, 刘铁宁, 韩清芳, 贾志宽. 密植条件下去叶处理对夏玉米籽粒灌浆及产量的影响. 西北农业学报, 2018, 27(9): 66-74.
Chen J Z, Wang Y Q, Xie J, Li X Y, Fu X, Nie J L, Zhu W, Liu T N, Han Q F, Jia Z K. Effects of leaf removal on grain filling and yield of summer maize under high density. Acta Agric Boreali-Occident Sin, 2018, 27(9): 66-74. (in Chinese with English abstract)
[69] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. Eur J Agron, 2022, 137: 126520.
doi: 10.1016/j.eja.2022.126520
[70] Shi Z, Chang T G, Chen G Y, Song Q F, Wang Y J, Zhou Z W, Wang M Y, Qu M N, Wang B S, Zhu X G. Dissection of mechanisms for high yield in two elite rice cultivars. Field Crops Res, 2019, 241: 107563.
doi: 10.1016/j.fcr.2019.107563
[71] 匡廷云, 赵明, 卢从明, 白克智, 焦德茂, 张荣铣, 李良璧. 提高光能利用效率力争作物产量的突破. 见:21世纪作物科技与生产发展学术讨论会论文集, 2002. pp 29-35.
Kuang T Y, Zhao M, Lu C M, Bai K Z, Jiao D M, Zhang R X, Li L B. Improve the utilization efficiency of light energy and strive for the breakthrough of crop yield. In: Symposium on Crop Technology and Production Development in the 21st Century, 2002. pp 29-35. (in Chinese)
[72] Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem, 2007, 388: 927-935
pmid: 17696776
[73] Wang Y, Lu Y Y, Chang Z Y, Wang S H, Ding Y F, Ding C Q. Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage. J Plant Growth Regul, 2018, 84: 583-592.
[74] 任禛, 陈泽斌, 胡昳, 尹敏, 夏体渊, 尹利方, 颜家亮, 王定康. 弱光胁迫下接种Glomus mosseae对玉米生长生理指标的影响. 玉米科学, 2016, 24(2): 160-165.
Ren Z, Chen Z B, Hu D, Yin M, Xia T Y, Yin L F, Yan J L, Wang D K. Effect of Glomus mosseae inoculation on growth and physiological indexes of maize under low-light stress. J Maize Sci, 2016, 24(2): 160-165. (in Chinese with English abstract)
[75] Evans L T. Crop evolution, adaptation and yield. Photosynthetica, 1998, 34: 56-56.
doi: 10.1023/A:1006889901899
[76] 宋航. 光、氮及其互作对玉米物质生产和碳氮代谢的影响. 河南农业大学硕士学位论文, 河南郑州, 2016.
Song H. Effect of Light, Nitrogen and Their Interaction on Matter Production, Carbon and Nitrogen Metabolism of Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016. (in Chinese with English abstract)
[77] Zheng N B, Du W G, Ge Q Y, Zhang G R, Li W H, Man W Q, Peng D C, Bai K Z, Kuang T Y. Progress in the breeding of soybean for high photosynthetic efficiency. Acta Bot Sin, 2002, 44: 253-258.
[78] Shi Q B, Kong F Y, Zhang H S, Jiang Y E, Heng S Q, Liang R, Ma L, Liu J S, Lu X D, Li P H, Li G. Molecular mechanisms governing shade responses in maize. Biochem Biophys Res Commun, 2019, 516: 112-119.
doi: 10.1016/j.bbrc.2019.05.142
[79] 于涛. 玉米粒位效应的差异蛋白质组学机制及其对6-BA调控的响应. 山东农业大学博士学位论文, 山东泰安, 2017.
Yu T. Differential Proteomic Mechanisms of Grain Position Effect in Maize and Its Response to 6-Benzylaminopurine (6-BA) Regulation. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2017. (in Chinese with English abstract)
[80] 乔江方, 刘京宝, 黄璐, 夏来坤, 朱卫红, 李川. 遮阴条件下不同生长调节剂对玉米的增产效应. 河南农业科学, 2013, 42(12): 24-27.
Qiao J F, Liu J B, Huang L, Xia L K, Zhu W H, Li C. Effect of different growth regulators on grain yield of maize in shading condition at flowering stage. J Henan Agric Sci, 2013, 42(12): 24-27. (in Chinese with English abstract)
[1] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[2] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[3] ZHANG Chen-Hui, ZHANG Yan, LI Guo-Hui, YANG Zi-Jun, ZHA Ying-Ying, ZHOU Chi-Yan, XU Ke, HUO Zhong-Yang, DAI Qi-Gen, GUO Bao-Wei. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice [J]. Acta Agronomica Sinica, 2023, 49(4): 1039-1051.
[4] LUAN Yi, BAI Yan, LU Shi, LI Lei-Xin, WANG De-Qiang, GAO Ting-Ting, SHI Jie, YANG Hong-Ming, LU Ming. Multi-disease resistance evaluation of spring maize varieties for the national regional test in Northeast and North China during 2016-2020 [J]. Acta Agronomica Sinica, 2023, 49(4): 1122-1131.
[5] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[6] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[7] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[8] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[9] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
[10] LIU Yue, MING Bo, LI Yao-Yao, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun, XIE Rui-Zhi. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development [J]. Acta Agronomica Sinica, 2023, 49(3): 795-807.
[11] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[12] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[13] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi-Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[14] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[15] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!