Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2705-2716.doi: 10.3724/SP.J.1006.2023.24261

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions

ZHU Ji-Jie1(), WANG Shi-Jie1, ZHAO Hong-Xia1, JIA Xiao-Yun1(), LI Miao1(), WANG Guo-Yin2   

  1. 1Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences / Hebei Laboratory of Crop Genetics and Breeding / Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang 050035, Hebei, China
    2Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050031, Hebei, China
  • Received:2022-11-22 Accepted:2023-02-21 Online:2023-10-12 Published:2023-03-06
  • Contact: E-mail: jiaxiaoyun1987@163.com; E-mail: limiao2003@sina.com
  • Supported by:
    Hebei Modern Agricultural Industry Technology System Innovation Team Construction Project-Mechanic Picked Variety Breeding(HBCT2018040202);HAAFS Science and Technology Innovation Special Project(2022KJCXZX-LYS-14);Youth Fund Project of Institute of Grain and Oil Crops of HAAFS(2020LYS04)

Abstract:

Thidiazuron (TDZ) is the main chemical agent for cotton defoliation, which plays a key role in realizing cotton mechanical harvesting. At present, there are few studies on the molecular regulation mechanism of TDZ induced cotton leaf abscission in the field environment. In this study, TDZ sensitive variety (Jifeng 914) and non-sensitive line (04-1685) were used as the experimental materials. Ethylene, cytokinin, and abscisic acid contents in leaves were determined. RNA-seq was used to analyze the changes of gene expression in leaves at 0, 1, 3, and 5 d after TDZ treatment. WGCNA (Weighted gene coexpression network analysis), GO and KEGG were used to analyze and screen gene coexpression modules and gene functions, respectively. The results showed that the ethylene, cytokinin, and abscisic acid contents of Jifeng 914 reached the highest level at 1 d after treatment, and the hormone contents of 04-1685 reached the highest level at 3 d after treatment. A total of 33,283 differentially expressed genes (DEGs) were screened by RNA-seq. Through WGCNA analysis, 2 and 3 modules highly related to hormone and samples were screened respectively. The genes in the modules mainly participate in abiotic stress response, circadian rhythm, and material metabolism. By analyzing the relative expression of plant hormone, stress response, and circadian rhythm related genes, the expression of hormone related genes in sensitive variety Jifeng 914 was higher, among which ethylene signal response genes were kept at a higher expression level within 5 days after treatment, abscisic acid signal response genes were kept at a higher expression level within 1 day after treatment, and cytokinin metabolism related genes expressed very low within 1 day after treatment and increased sharply at 3 d and 5 d after treatment. At 1 d and 3 d after treatment, heat shock protein genes (HSP70, HSP90, and ATJ3), calcium homeostasis regulating genes (CRT3, NCL), and circadian rhythm genes (LNK2, APRR9, CCA1) were significantly down regulated, while circadian rhythm genes (ARR8) were up regulated. Spraying TDZ in the field environment, while causing changes in hormone content, may damage the plant's circadian rhythm and reduce the stress ability to abiotic stress, and thus accelerating leaf senescence and abscission. This study provides more ideas for enriching the molecular regulation mechanism of TDZ induced leaf abscission.

Key words: upland cotton, thidiazuron, RNA-seq, plant hormone, abiotic stress, circadian rhythm

Table 1

Gene and primer sequences used in qRT-PCR"

基因 Gene 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)
GhHis3 TCAAGACTGATTTGCGTTTCCA GCGCAAAGGTTGGTGTCTTC
Ghir_D07G009830 CAATCAGACAAGCCAACA CTAAACCGACTTCTATGC
Ghir_D08G005270 CAAGGCTCGTCGTAAGGG TTGGCATAGTTGACTTTGTTGA
Ghir_A01G018610 AAGTTCACCACCGTCAGA CTCAAAGGACCATCAATC
Ghir_D08G001540 GGCTAACGCTGACCCTAC ATCCTCCGTGACTCCAAG
Ghir_D07G008630 AGGGTTGGAATCTTGGTA CCAGGTTTCGCTTGAATA
Ghir_D11G029010 ATCCAACAATAGGCAAGG TCAAACTCCGACCACTCT
Ghir_A05G006740 GAACACTTGCCTCCTTCT CTTAATAGCCTGTGGGTC
Ghir_A04G002920 CTCCTCTGGATTGGGTTTA GGTTCCTTGGCAGTTGGT
Ghir_D08G020190 GCAACATCCTCCTTCACC AAGCCCTCCAATACCAAT
Ghir_A06G003210 CAATAGCCAGGCAAGCGG GGGCAATAGCAAACAGCA

Fig. 1

Changes of leaf defoliation rate and hormone contents after TDZ treatment JF914: Jifeng 914; CK: control."

Table S1

Statistics of the sequence data quality"

样品
Sample
原始数据
Raw data (bp)
干净数据
Clean data (bp)
Q30 (%) GC含量
GC content (%)
总比对率
Total mapped (%)
特异比对率 Uniquely mapped (%)
JF914-0d_1 7.52×109 7.11×109 93.78 45.01 92.83 84.09
JF914-0d_2 7.85×109 7.57×109 93.79 44.42 94.72 87.9
JF914-0d_3 7.46×109 7.19×109 93.55 44.45 95.47 88.46
JF914-1d_1 7.31×109 7.11×109 93.88 44.22 95.62 89.28
JF914-1d_2 7.92×109 7.73×109 93.79 44.19 95.68 89.6
JF914-1d_3 7.07×109 6.88×109 93.76 44.24 94.48 88.34
JF914-3d_1 6.97×109 6.83×109 93.87 43.87 94.42 88.06
JF914-3d_2 7.69×109 7.50×109 93.84 44.08 95.31 88.84
JF914-3d_3 6.96×109 6.80×109 93.47 43.83 95.18 88.84
JF914-5d_1 7.34×109 7.16×109 93.47 43.99 95.19 88.99
JF914-5d_2 7.03×109 6.86×109 93.89 44.12 95.4 89.32
JF914-5d_3 6.37×109 6.24×109 93.03 43.92 95.16 89.37
04-1685-0d_1 7.67×109 7.40×109 93.24 44.25 95.04 88.39
04-1685-0d_2 7.98×109 7.60×109 93.42 43.99 95.42 88.26
04-1685-0d_3 7.10×109 6.82×109 93.12 44.19 94.8 88.09
04-1685-1d_1 7.07×109 6.85×109 93.91 44.33 95.61 88.98
04-1685-1d_2 6.35×109 6.21×109 93.78 44.24 95.61 89.61
04-1685-1d_3 7.22×109 7.05×109 93.51 44.28 95.58 89.49
04-1685-3d_1 7.41×109 7.23×109 93.75 44.02 94.06 86.81
04-1685-3d_2 7.85×109 7.67×109 93.82 43.88 95.82 89.12
04-1685-3d_3 6.94×109 6.79×109 93.57 44.06 94.01 86.79
04-1685-5d_1 7.53×109 7.35×109 93.44 44.17 94.64 88.69
04-1685-5d_2 6.92×109 6.74×109 93.43 44.1 93.8 87.47
04-1685-5d_3 6.67×109 6.49×109 93.29 44.09 93.49 86.86

Fig. 2

Principal component analysis among samples based on RNA-seq data JF914: Jifeng 914."

Table 2

Number of differentially expressed genes (DEGs) among the sample stages and materials"

比较
Comparison
所有DEGs
Total DEGs
上调
Up regulated
下调
Down regulated
JF914-0d vs JF914-1d 2151 1180 971
JF914-1d vs JF914-3d 20,189 8045 12,144
JF914-3d vs JF914-5d 5039 2476 2563
JF914-0d vs 04-1685-0d 644 269 375
JF914-1d vs 04-1685-1d 539 218 321
JF914-3d vs 04-1685-3d 339 133 206
JF914-5d vs 04-1685-5d 1971 740 1231
04-1685-0d vs 04-1685-1d 3355 1892 1463
04-1685-1d vs 04-1685-3d 22,461 9019 13,442
04-1685-3d vs 04-1685-5d 5790 2520 3270

Fig. 3

Comparison of qRT-PCR vs RNA-seq A: Jifeng 914; B: 04-1685; 1: 0 d; 2: 1 d; 3: 3 d; 4:5 d."

Fig. 4

coexpression modules for sample and hormone JF914: Jifeng 914."

Table 3

GO items enriched by genes in each module"

性状
Trait
模块
Module
GO号
GO ID
描述
Description
条目类型 Term type 基因数量
Gene number
校正PP-adjust
激素
Hormone
棕色 Brown GO:0003913 DNA光解酶活性 DNA photolyase activity MF 5 0
GO:0016703 氧化还原酶活性, 作用于结合分子氧的单个供体, 结合一个氧原子(内部单加氧酶或内部混合作用氧化酶)
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)
MF 6 0.002
GO:0010277 叶绿素a加氧酶[总]活性
Chlorophyllide a oxygenase [overall] activity
MF 6 0.002
GO:0005372 水跨膜转运子活性
Water transmembrane transporter activity
MF 6 0.003
GO:0042044 液体转运 Fluid transport BP 6 0
GO:0006833 水分转运 Water transport BP 6 0
GO:0009628 响应非生物刺激 Response to abiotic stimulus BP 31 0.007
GO:0007623 昼夜节律 Circadian rhythm BP 6 0.017
GO:0048511 节律过程 Rhythmic process BP 6 0.017
品红
Magenta
GO:0042752 昼夜节律调控 Regulation of circadian rhythm BP 4 0.001
GO:0042753 昼夜节律正向调控
Positive regulation of circadian rhythm
BP 3 0.009
样品
Sample
棕色 Brown GO:0005198 结构分子活性 Structural molecule activity MF 59 0.013
GO:0003735 核糖体结构组分
Structural constituent of ribosome
MF 53 0.020
GO:0047334 二磷酸果糖-6-磷酸-1-磷酸转移酶活性Diphosphate-fructose-6-phosphate- 1-phosphotransferase activity MF 4 0.043
GO:0005840 核糖体 Ribosome CC 55 0.011
GO:0043228 无膜包裹的细胞器
Non-membrane-bounded organelle
CC 67 0.038
GO:0043232 细胞内部无膜包裹的细胞器
Intracellular non-membrane-bounded organelle
CC 67 0.038
GO:0006412 翻译 Translation BP 49 0.044
品红Magenta GO:0003951 NAD+激酶活性 NAD+ kinase activity MF 3 0.938
粉色
Pink
GO:0042752 昼夜节律调控 Regulation of circadian rhythm BP 4 0.008
GO:0042753 昼夜节律正向调控
Positive regulation of circadian rhythm
BP 3 0.066

Table 4

KEGG pathways enrich by genes in each module"

性状
Trait
模块
Module
KEGG通路号
KEGG pathway ID
描述
Description
基因数量
Gene number
校正PP-adjust
激素
Hormone
棕色 Brown map04712 昼夜节律-植物
Circadian rhythm-plant
13 3.02E-06
map00760 烟酸和烟酰胺代谢
Nicotinate and nicotinamide metabolism
5 0.079
map04141 内质网中的蛋白质加工
Protein processing in endoplasmic reticulum
18 0.162
map04146 过氧化物酶体
Peroxisome
9 0.494
map03060 蛋白质外排
Protein export
6 0.647
map04120 泛素介导的蛋白水解
Ubiquitin mediated proteolysis
11 0.698
品红
Magenta
map04075 植物激素信号转导
Plant hormone signal transduction
5 0.006
map00230 嘌呤代谢
Purine metabolism
2 0.168
map00400 苯丙氨酸、酪氨酸和色氨酸生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
1 0.769
map00240 嘧啶代谢
Pyrimidine metabolism
1 0.992
样品
Sample
棕色
Brown
map00010 糖酵解/糖异生
Glycolysis/Gluconeogenesis
18 0.062
map03010 核糖体
Ribosome
38 0.088
map00520 氨基糖和核苷酸唐代谢
Amino sugar and nucleotide sugar metabolism
17 0.170
map04145 噬菌体
Phagosome
14 0.586
map00030 戊糖磷酸途径
Pentose phosphate pathway
8 0.830
map00600 鞘磷脂代谢
Sphingolipid metabolism
6 0.867
品红
Magenta
map00730 硫胺素代谢
Thiamine metabolism
2 0.195
map04144 内吞作用
Endocytosis
4 0.426
map04145 吞噬体
Phagosome
3 0.527
粉色
Pink
map04075 植物激素信号转导
Plant hormone signal transduction
5 0.420
map00900 萜类主链生物合成
Terpenoid backbone biosynthesis
2 0.740

Table S2

Expression level of the genes in the modules"

基因
Genes
模体
Symbol
JF914-0d JF914-1d JF914-3d JF914-5d 04-1685-0d 04-1685-1d 04-1685-3d 04-1685-5d
Ghir_A01G008930 - 17.0 20.2 12.3 7.5 20.8 19.8 16.7 8.8
Ghir_A01G010550 - 0.5 0.2 0.4 0.4 0.6 0.3 0.3 0.3
Ghir_A01G016940 - 8.3 8.7 6.4 4.3 8.1 7.7 7.6 4.0
Ghir_A02G005410 - 16.2 6.9 7.0 9.2 12.4 6.8 7.4 9.6
Ghir_A02G007670 ATCAO, CAO, CH1 20.5 13.2 8.2 28.4 23.3 13.8 6.4 24.9
Ghir_A02G009880 - 20.4 29.8 39.1 15.0 18.2 22.2 30.5 9.4
Ghir_A02G012150 ATSKP2;2,SKP2B 7.3 4.8 4.1 6.9 5.7 4.7 3.8 6.5
Ghir_A02G012620 AtCRT3,CRT3,EBS2,PSL1 269.8 121.8 123.9 95.2 204.6 88.7 188.8 66.5
Ghir_A02G013520 ARA-7,ARA7,atARA7,ATRAB-F2B,ATRAB5B,ATRABF2B,RAB-F2B,RABF2B 12.1 15.0 10.1 9.3 6.9 13.1 9.7 9.1
Ghir_A02G014320 AtRABA4a,RABA4a 2.5 2.2 3.6 2.1 2.5 2.0 4.5 1.7
Ghir_A02G017730 SUVR5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_A02G019660 AtACER,ATCES1 2.0 2.8 2.1 1.5 2.3 2.2 2.3 1.5
Ghir_A03G001740 - 3.1 1.7 0.8 1.9 3.4 2.2 0.5 2.7
Ghir_A03G004650 - 16.7 18.3 12.7 7.4 18.4 16.1 17.3 8.1
Ghir_A03G008550 ENO1 6.6 9.8 5.3 3.8 6.0 8.0 6.5 3.2
Ghir_A03G011460 - 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0
Ghir_A03G014410 GAPC-2,GAPC2 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0
Ghir_A03G020480 - 4.3 6.9 5.2 4.2 5.8 6.9 5.4 3.1
Ghir_A04G005850 - 1.6 2.3 1.6 0.9 2.1 2.5 1.5 0.9
Ghir_A04G011920 AGAL1,AtAGAL1 8.7 12.5 11.1 3.0 6.5 9.9 6.2 5.0
Ghir_A04G012800 TUA2 9.0 10.2 20.2 3.2 7.1 9.4 22.0 4.8
Ghir_A05G006080 ALDH11A3 3.7 5.6 4.5 3.0 1.7 3.3 3.0 1.9
Ghir_A05G006290 ACD1,LLS1,PAO 32.3 16.4 5.8 25.9 31.4 19.5 5.4 22.3
Ghir_A05G006740 ABC1K1,ACDO1,AtACDO1,PGR6 9.9 7.6 2.6 6.6 10.3 8.5 2.0 6.0
Ghir_A05G007340 AGT,AGT1,SGAT 63.9 39.5 22.6 44.2 64.1 46.1 16.5 70.0
Ghir_A05G008440 BIC1 51.6 11.1 1.3 22.1 62.0 16.3 0.8 27.4
Ghir_A05G012590 APT5 1.4 4.9 2.4 2.3 1.1 2.3 3.2 1.8
Ghir_A05G019810 ATHAL3B,HAL3,HAL3B 2.0 1.7 1.7 1.8 2.1 1.6 1.3 1.8
Ghir_A05G021970 TUA2 2.5 3.3 2.7 1.6 2.4 3.1 4.0 1.3
Ghir_A05G027740 ATRABG3B,RAB7,RAB75,RABG3B 1.1 1.8 2.2 1.0 1.4 1.6 2.7 1.0
Ghir_A05G028660 LNK2 24.9 13.8 6.8 18.2 27.2 14.2 6.9 14.6
Ghir_A05G030390 UBC19 1.4 1.3 1.0 1.9 1.7 1.8 1.3 1.7
Ghir_A05G041300 ARR8,ATRR3,RR3 2.4 24.9 14.9 4.7 1.5 17.4 12.9 8.6
Ghir_A06G001750 COR27 2.3 11.4 6.0 4.6 1.5 11.3 5.5 4.7
Ghir_A06G004640 LACS9 3.1 2.2 0.9 2.7 3.1 2.1 0.8 2.0
Ghir_A06G005970 - 15.1 19.9 13.6 6.5 14.1 18.4 16.0 7.9
Ghir_A06G006470 ATRAB-F2A,ATRAB5A,ATRABF2A,RAB-F2A,RAB5A,RABF2A,RHA1 3.4 4.0 3.3 2.5 3.0 3.7 3.8 2.2
Ghir_A06G010230 - 5.5 6.4 6.8 3.8 5.3 6.0 6.8 3.3
Ghir_A06G012540 CRY3 10.8 3.8 2.2 8.7 12.5 4.8 1.6 10.6
Ghir_A06G016380 - 23.7 30.6 26.6 14.3 18.0 25.3 21.3 11.2
Ghir_A06G017580 CRY3 6.1 19.2 18.3 11.6 5.0 19.8 17.7 10.1
Ghir_A06G018020 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 251.1 101.9 51.0 145.5 276.6 94.0 82.0 149.5
Ghir_A06G020430 - 27.0 28.9 21.5 11.9 27.8 29.7 25.1 13.6
Ghir_A06G021400 RPL16A 5.1 5.4 5.0 3.3 4.4 5.8 5.5 5.1
Ghir_A06G022650 UVR3 18.4 14.3 7.2 15.6 21.0 15.2 6.1 16.8
Ghir_A07G002950 - 10.5 17.9 21.9 6.5 11.6 15.4 17.5 12.4
Ghir_A07G007580 ATDGK1,DGK1 3.4 2.9 3.6 3.1 4.0 3.0 4.5 2.5
Ghir_A07G007590 UGD3 1.4 2.9 2.0 1.1 3.2 2.6 2.2 0.3
Ghir_A07G012010 atENP1,ENP1 5.2 5.3 3.3 1.2 5.8 5.3 4.8 1.5
Ghir_A07G012630 TUB6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1
Ghir_A07G015600 GAE3 0.8 0.8 1.0 0.4 1.3 0.9 1.4 0.5
Ghir_A07G016260 PALE1,TH-2,TH2 2.2 2.6 3.3 2.6 2.8 2.2 4.2 2.0
Ghir_A07G017020 ATCHIP,CHIP 5.5 5.5 4.3 5.8 6.6 5.2 4.1 6.4
Ghir_A07G018990 GAUT9 2.0 2.9 1.7 0.9 2.1 2.8 1.9 0.8
Ghir_A07G023100 GAUT9 0.7 1.2 1.5 0.2 0.6 1.5 1.9 0.2
Ghir_A08G000130 - 3.3 3.2 3.1 3.8 2.7 3.6 2.5 4.0
Ghir_A08G001580 ACD1-LIKE,PTC52,TIC55-IV 15.8 10.0 6.2 18.3 19.1 9.0 9.4 19.0
Ghir_A08G003090 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 369.6 136.9 30.6 116.6 326.4 122.5 58.2 131.7
Ghir_A08G005550 ARS27A,RS27A 9.3 10.7 7.8 5.6 12.1 10.0 10.5 5.1
Ghir_A08G009530 ARS27A,RS27A 3.2 3.5 3.2 1.8 2.4 3.2 3.3 1.3
Ghir_A08G011680 PGY2 36.1 39.6 28.7 16.5 37.4 41.4 37.4 17.8
Ghir_A08G014320 GAE3 1.1 1.7 1.8 1.0 1.3 1.9 1.8 1.2
Ghir_A08G017930 - 9.4 8.2 9.4 8.0 8.9 6.7 11.9 6.3
Ghir_A08G019290 ATGID1B,GID1B 2.0 6.7 4.2 3.5 1.7 3.3 4.3 2.8
Ghir_A08G021740 RPL18 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1
Ghir_A08G022220 - 8.5 11.9 5.6 1.6 9.5 11.8 5.4 1.1
Ghir_A08G023180 - 11.8 10.4 4.9 15.1 9.7 13.1 3.1 9.5
Ghir_A08G023710 - 4.0 6.8 2.5 1.3 2.3 3.2 2.4 0.9
Ghir_A09G002690 - 7.9 9.1 7.6 4.7 10.1 8.9 10.6 4.8
Ghir_A09G006240 - 1.9 3.4 1.3 0.5 2.1 3.8 1.6 0.5
Ghir_A09G010800 - 6.7 7.6 6.1 4.0 6.4 7.8 7.4 4.7
Ghir_A09G014710 AHP5,AHP5 33.2 32.2 27.0 13.2 31.4 32.4 33.1 16.5
Ghir_A09G015860 RPL12C 2.9 3.0 3.2 2.5 3.3 2.7 3.5 2.2
Ghir_A09G015880 PIP2;2,PIP2B 27.8 3.6 1.3 9.6 23.3 3.3 0.4 5.8
Ghir_A09G016580 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 14.3 5.0 1.5 4.4 15.6 3.7 2.5 7.1
Ghir_A09G018290 EFO2,RUP2 9.1 2.9 0.2 4.1 8.8 4.8 0.3 3.3
Ghir_A09G018820 ATRBL3,RBL3 1.3 3.3 3.0 0.7 1.1 2.9 2.8 0.8
Ghir_A09G022090 BBX24,BBX24,STO 88.0 53.3 25.6 64.9 113.4 64.4 17.8 55.6
Ghir_A10G016320 - 0.3 0.4 0.2 0.4 0.5 0.5 0.3 0.3
Ghir_A10G018160 RPL10B 1.2 2.4 1.6 0.4 1.3 1.7 0.3 0.3
Ghir_A10G018930 - 8.9 38.9 24.6 17.5 11.7 40.0 29.3 25.2
Ghir_A10G020390 - 2.1 1.6 2.0 1.3 1.9 1.6 1.8 1.2
Ghir_A10G023690 ATHH2,PIP1;2,PIP1B,TMP-A 49.3 3.8 1.3 7.5 26.0 2.7 0.8 7.0
Ghir_A10G024010 ATHH2,PIP1;2,PIP1B,TMP-A 0.5 21.6 13.8 0.9 0.4 11.5 10.9 0.5
Ghir_A11G001650 APRR5,PRR5 8.0 6.1 3.6 7.5 9.6 5.9 2.3 6.9
Ghir_A11G003880 RGP,RGP3 14.5 18.6 24.4 12.7 24.7 16.9 36.9 10.0
Ghir_A11G003900 GAUT11 2.2 2.2 2.0 1.4 2.2 1.7 2.5 1.4
Ghir_A11G005950 - 10.6 14.2 11.2 7.7 12.5 12.2 14.9 9.2
Ghir_A11G006660 - 4.5 2.9 1.5 10.8 3.6 5.2 4.5 6.3
Ghir_A11G007090 - 9.4 11.4 7.9 4.9 8.0 11.5 7.3 5.0
Ghir_A11G010130 RRP41 8.9 9.3 7.5 4.3 6.7 7.9 6.1 3.6
Ghir_A11G010230 SPA1 4.3 2.5 1.4 3.6 4.2 2.9 1.7 3.7
Ghir_A11G010900 APRR9,PRR9,TL1 9.9 2.7 0.5 3.8 8.9 3.5 0.4 2.6
Ghir_A11G012240 ATMHX,ATMHX1,MHX,MHX1 16.7 20.7 12.9 7.6 16.2 17.9 14.7 6.7
Ghir_A11G013550 - 2.3 3.2 2.6 3.7 3.6 2.7 2.6 3.3
Ghir_A11G017790 AtPERK8,PERK8 2.9 4.0 2.3 2.1 2.4 3.8 2.9 1.8
Ghir_A11G017880 - 4.2 5.3 4.0 3.3 4.1 3.6 5.5 4.2
Ghir_A11G024630 RPS2 5.9 7.2 6.7 1.5 5.6 6.3 6.8 1.7
Ghir_A11G031350 AtNCL,NCL 7.0 1.5 0.5 1.9 6.2 2.4 0.5 1.6
Ghir_A11G035290 ABCI20,ATNAP9,NAP9 1.8 1.4 1.6 1.8 1.4 1.5 1.2 1.7
Ghir_A12G001470 LNK1 15.1 4.4 3.3 6.1 17.5 5.0 3.6 5.2
Ghir_A12G004550 - 0.4 0.2 0.2 0.2 0.3 0.5 0.3 0.4
Ghir_A12G008430 EMB3010,RPS6B 0.5 0.6 0.2 0.0 0.6 0.5 0.2 0.4
Ghir_A12G012130 SINAT3 1.3 1.3 1.2 1.3 1.4 1.0 0.9 1.4
Ghir_A12G012650 AtCCA1,CCA1 1.3 0.4 0.0 1.2 1.8 1.0 0.0 0.6
Ghir_A12G022310 - 4.7 12.9 7.3 6.2 6.0 10.0 6.4 3.8
Ghir_A12G022870 ACX1,ATACX1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
Ghir_A12G025940 APRR5,PRR5 15.0 9.1 3.5 11.1 14.8 10.2 3.3 8.7
Ghir_A13G006290 - 0.5 3.9 0.8 0.3 0.7 2.3 1.9 0.4
Ghir_A13G006750 APRR5,PRR5 13.2 3.3 2.6 5.5 14.0 4.0 3.6 5.2
Ghir_A13G008670 SAC56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_A13G009930 ATNADK2,NADK2 2.6 2.2 1.2 2.7 2.6 2.3 1.3 2.9
Ghir_A13G021180 ATNUDT19,ATNUDX19,NUDX19 12.8 9.2 5.8 13.2 13.4 9.2 7.2 13.9
Ghir_A13G023720 DDB2 3.5 2.8 2.0 4.5 4.5 2.6 1.7 6.7
Ghir_D01G007810 ATEHD1,EHD1 4.8 4.9 4.7 9.1 5.9 5.6 4.3 7.4
Ghir_D01G008810 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 71.3 20.6 4.6 20.9 76.9 20.5 10.2 24.3
Ghir_D01G009340 - 23.4 24.0 16.7 10.7 26.1 24.2 21.8 11.6
Ghir_D01G010350 - 14.1 10.6 9.2 22.8 13.6 8.4 5.6 40.8
Ghir_D01G011590 - 4.0 2.5 3.1 3.3 4.0 2.7 2.9 3.8
Ghir_D01G015500 ATRPAC43,RPAC43 0.0 0.2 0.1 0.7 0.4 0.3 0.0 0.3
Ghir_D02G000260 VHA-E2 2.4 2.2 1.7 0.9 1.1 1.9 1.1 0.6
Ghir_D02G001270 VHA-E2 0.9 1.2 1.5 0.1 1.4 1.7 1.4 1.2
Ghir_D02G001290 VHA-E2 0.5 0.8 1.3 0.2 0.5 0.5 1.4 0.5
Ghir_D02G001350 VHA-E2 5.4 9.0 5.1 1.1 8.2 8.7 6.3 2.7
Ghir_D02G002390 GAE6 6.0 6.8 4.8 2.0 4.0 5.7 9.1 4.9
Ghir_D02G002560 AtACER,ATCES1 1.5 2.0 1.4 1.0 1.8 1.6 1.6 1.0
Ghir_D02G002620 DAYSLEEPER 0.8 1.2 1.0 0.2 1.4 1.0 1.2 0.6
Ghir_D02G007380 ADH,ADH1,ATADH,ATADH1 10.4 9.8 10.0 6.1 10.3 9.4 11.8 11.0
Ghir_D02G008120 ATCAO,CAO,CH1 16.6 10.0 7.4 19.3 18.3 12.0 5.8 18.1
Ghir_D02G008760 AtTIFY1,GATA25,TIFY1,ZIM 4.6 4.5 3.6 5.0 4.1 3.8 3.4 4.9
Ghir_D02G012890 AtSBH2,SBH2 138.7 326.3 31.0 22.9 90.9 200.7 17.2 6.9
Ghir_D02G012900 SBH1 4.0 4.7 4.2 2.9 4.6 4.5 5.5 3.1
Ghir_D02G021570 - 9.3 14.0 13.7 5.7 9.0 10.8 8.3 10.0
Ghir_D03G006610 SKP2A 9.9 5.0 3.9 7.2 7.5 4.8 3.2 6.1
Ghir_D03G007190 ARA-7,ARA7,atARA7,ATRAB-F2B,ATRAB5B,ATRABF2B,RAB-F2B,RABF2B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D03G007840 - 0.7 1.0 0.4 0.7 0.5 0.9 0.9 0.5
Ghir_D03G008510 Nog1-1 12.4 12.9 8.4 5.9 13.6 12.4 11.2 5.9
Ghir_D03G010330 - 2.5 1.0 4.2 0.1 1.7 2.3 1.0 0.1
Ghir_D03G011050 ENO1 7.7 12.0 9.0 3.9 7.2 9.3 8.8 3.7
Ghir_D03G012330 GOX1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D03G012450 - 2.8 7.3 9.5 0.1 1.1 13.0 12.0 10.4
Ghir_D03G017250 - 5.5 3.7 1.4 5.7 6.7 4.3 1.2 5.2
Ghir_D04G003680 AtSRT2,SRT2 6.1 4.9 0.8 4.5 8.1 6.5 0.6 4.5
Ghir_D04G006910 CYT1,EMB101,GMP1,SOZ1,VTC1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D04G008340 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D04G014000 AIRP2,AtAIRP2 2.0 1.3 1.3 2.3 1.4 1.6 1.0 1.8
Ghir_D04G014250 - 0.9 0.6 0.2 1.0 1.1 0.7 0.2 0.9
Ghir_D04G014510 - 3.0 3.0 4.4 2.4 3.2 3.0 3.9 1.9
Ghir_D04G015550 ATRMA1,RMA1 12.7 10.2 5.0 12.2 13.6 10.7 2.5 8.9
Ghir_D04G016690 LNK1 5.4 0.9 1.8 3.4 5.8 1.1 2.5 3.5
Ghir_D04G020270 PGM3 10.0 10.1 10.0 6.4 8.8 11.1 11.0 6.0
Ghir_D05G001960 ARRS1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D05G004490 SQD1 42.7 71.7 29.8 17.5 34.4 66.9 29.0 12.5
Ghir_D05G006370 ACD1,LLS1,PAO 1.7 0.7 0.2 1.8 0.9 0.5 0.1 1.4
Ghir_D05G016900 - 8.7 8.8 7.3 3.7 9.2 10.3 7.1 3.9
Ghir_D05G019180 ARF5,IAA24,MP,MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D05G021900 TUA2 9.8 13.4 11.7 3.6 8.6 13.5 14.9 2.6
Ghir_D05G027740 ATRABG3B,RAB7,RAB75,RABG3B 1.6 1.6 2.1 1.1 1.5 2.0 2.5 1.6
Ghir_D05G028650 - 11.8 13.8 15.5 8.9 18.5 17.8 18.2 9.4
Ghir_D05G029680 - 1.7 3.9 1.6 1.9 0.5 1.8 3.4 0.9
Ghir_D05G030330 UBC19 5.1 5.9 3.1 6.3 6.0 5.7 3.0 7.3
Ghir_D05G039710 - 2.3 3.4 2.9 2.4 3.1 2.6 2.9 2.0
Ghir_D06G003560 - 0.4 2.5 1.2 0.1 0.8 1.6 1.1 0.1
Ghir_D06G004700 LACS9 0.1 0.1 0.1 0.6 0.3 0.2 0.0 0.0
Ghir_D06G009240 HSP17.6II 1.0 1.1 2.2 3.2 1.2 1.1 1.3 2.4
Ghir_D06G011830 CRY3 11.2 3.7 1.9 7.6 12.6 4.5 1.7 9.1
Ghir_D06G012390 AtSBH2,SBH2 3.7 3.2 3.3 2.5 3.4 2.9 3.5 1.8
Ghir_D06G015060 AtRABA1c,RABA1c 8.1 8.8 12.8 7.7 10.2 7.9 15.1 6.8
Ghir_D06G016860 ADT1,AtADT1 1.6 2.8 2.6 2.1 1.4 2.7 2.2 1.8
Ghir_D06G017240 - 23.8 32.3 32.2 17.8 18.5 25.5 24.3 12.9
Ghir_D06G017430 - 9.1 8.7 5.7 8.7 8.4 6.5 3.2 13.0
Ghir_D06G018900 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 302.1 106.9 48.7 130.6 306.0 98.0 75.9 125.3
Ghir_D06G022590 ATNUDT15,ATNUDX15,NUDX15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D07G006200 OLD5,QS,SUFE3 16.5 11.9 4.6 15.4 19.3 13.0 4.2 13.9
Ghir_D07G007590 ATDGK1,DGK1 2.9 2.6 3.0 2.5 2.9 2.2 4.0 2.3
Ghir_D07G011020 HSP17.6B 2.2 0.7 1.5 1.0 1.2 0.6 0.8 1.0
Ghir_D08G001600 ACD1-LIKE,PTC52,TIC55-IV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D08G003190 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 43.1 27.8 10.4 37.9 60.3 28.9 15.4 29.5
Ghir_D08G003210 AtHsp90.2,ERD8,HSP81-2,HSP81.2,HSP90.2 88.6 40.3 15.9 42.4 84.9 42.8 20.3 38.1
Ghir_D08G009200 L18aB,RPL18aB 0.5 0.2 0.3 0.0 0.0 0.3 0.1 0.1
Ghir_D08G012060 BIP,BIP2 23.3 5.4 4.9 17.4 23.2 4.0 8.7 17.9
Ghir_D08G015210 GAE3 1.3 1.4 1.2 0.5 1.3 1.5 1.7 0.9
Ghir_D08G017160 ATSYP22,ATVAM3,SGR3,SYP22,VAM3 6.3 5.5 5.2 5.2 5.3 5.6 6.1 3.9
Ghir_D08G022110 RPT2 60.6 25.3 15.1 25.8 49.5 30.0 13.2 25.8
Ghir_D08G022550 - 4.1 8.2 6.5 3.0 5.5 8.0 5.6 2.9
Ghir_D08G022910 - 2.5 3.2 2.0 0.6 1.9 2.5 2.1 0.7
Ghir_D08G024630 - 3.4 7.2 3.7 2.1 2.9 4.0 3.0 2.0
Ghir_D08G025270 DECR,SDRB 23.5 12.5 1.9 14.9 27.0 16.0 1.1 13.4
Ghir_D08G025770 HY5,TED 5 7.9 3.8 1.4 3.9 6.6 4.2 1.3 3.8
Ghir_D09G004530 TUB8 37.3 59.0 46.9 22.6 37.9 63.7 42.2 22.7
Ghir_D09G010540 - 6.1 7.0 5.9 4.2 7.3 6.7 6.8 4.1
Ghir_D09G010620 ATJ,ATJ3,J3 89.9 21.7 12.6 28.6 74.2 17.0 18.9 28.2
Ghir_D09G011610 ATNADK-1,NADK1 3.8 2.6 1.1 1.5 3.2 2.5 1.0 0.9
Ghir_D09G014410 - 4.6 5.8 3.8 0.4 3.6 6.8 4.5 0.5
Ghir_D09G015310 - 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.1
Ghir_D09G015320 PIP2;2,PIP2B 5.3 1.0 0.2 2.1 7.9 1.1 0.2 1.6
Ghir_D09G017780 EFO2,RUP2 8.4 3.5 0.5 4.3 9.9 5.5 0.2 3.5
Ghir_D09G022230 RPS24B 21.8 21.7 22.3 7.9 25.5 27.0 32.2 11.1
Ghir_D09G025630 - 0.2 1.3 1.6 0.6 1.0 1.1 1.8 0.7
Ghir_D10G001380 - 0.8 2.5 0.9 0.2 0.5 1.5 1.2 0.4
Ghir_D10G004090 - 1.6 2.1 2.2 1.7 1.9 2.0 2.5 1.7
Ghir_D10G008440 ATTSO2,TSO2 0.7 1.8 1.8 0.9 0.5 2.2 1.6 1.6
Ghir_D10G010460 - 1.8 2.0 1.9 1.5 2.5 1.9 2.2 1.4
Ghir_D10G019760 RPS26e 22.6 27.3 24.3 11.3 27.2 24.6 26.7 13.2
Ghir_D10G020440 ARR9,ATRR4 10.6 42.9 33.4 17.9 12.9 45.9 46.1 29.7
Ghir_D10G026150 ATHH2,PIP1;2,PIP1B,TMP-A 11.2 0.7 0.2 1.8 6.8 0.2 0.1 3.2
Ghir_D10G026160 ATHH2,PIP1;2,PIP1B,TMP-A 0.8 0.0 0.0 0.1 0.3 0.1 0.0 0.1
Ghir_D10G026170 ATHH2,PIP1;2,PIP1B,TMP-A 23.2 6.8 1.8 7.5 18.0 4.9 0.9 6.6
Ghir_D10G026440 - 0.9 34.4 22.7 4.7 0.2 18.4 24.5 2.0
Ghir_D11G002530 ATOXA1,OXA1,OXA1a,OXA1AT 0.5 0.0 0.1 0.0 0.3 0.6 0.1 0.3
Ghir_D11G004470 - 42.6 55.2 38.2 23.1 46.4 57.7 45.9 16.6
Ghir_D11G010190 SPA1 1.8 1.4 1.0 1.7 2.7 1.3 1.1 1.8
Ghir_D11G010820 APRR9,PRR9,TL1 6.8 1.8 0.4 4.7 7.2 3.2 0.6 3.2
Ghir_D11G010920 LHY,LHY,LHY1 0.5 0.1 0.0 0.6 0.5 0.4 0.0 0.5
Ghir_D11G013600 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G013840 AtcPT1,cPT1 1.1 1.9 1.5 1.2 0.5 1.9 1.5 1.2
Ghir_D11G016270 ATCOP1,COP1,DET340,EMB168,FUS1 7.8 7.7 5.0 7.5 9.6 8.4 4.3 5.2
Ghir_D11G019410 - 26.2 40.9 17.4 16.4 18.4 34.8 13.6 9.7
Ghir_D11G023570 - 0.3 1.3 1.6 0.1 1.1 1.3 1.5 0.9
Ghir_D11G024810 AtUGP1,UGP,UGP1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G027800 GSDA 22.3 23.7 18.0 10.3 19.9 22.5 21.4 12.1
Ghir_D11G029450 - 1.7 1.0 1.1 0.0 2.2 3.6 3.2 2.5
Ghir_D11G030550 - 2.0 1.2 2.2 1.2 1.2 2.3 1.1 0.9
Ghir_D11G032310 GAPCP-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ghir_D11G032690 ATSNF4,SNF4 3.6 9.4 4.5 2.6 3.3 7.1 6.2 2.2
Ghir_D11G035310 - 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0
Ghir_D11G035370 RPL20 7.3 8.9 7.0 6.5 6.1 7.8 8.6 6.4
Ghir_D11G036090 AT-HSC70-1,AtHsp70-1,HSC70,HSC70-1,HSP70-1 45.7 22.9 20.7 43.9 46.8 18.8 29.2 54.0
Ghir_D11G036150 ABCI20,ATNAP9,NAP9 6.5 4.5 3.2 10.0 7.8 5.5 2.6 10.7
Ghir_D12G001500 LNK1 5.8 1.4 1.0 2.5 5.7 1.3 1.1 1.9
Ghir_D12G004770 DECR,SDRB 4.9 2.6 1.5 4.5 3.3 2.0 1.1 4.5
Ghir_D12G012900 LHY,LHY,LHY1 8.7 3.2 1.1 11.4 13.3 3.8 1.0 9.5
Ghir_D12G018990 - 10.3 11.5 10.7 6.7 11.2 13.2 13.3 7.2
Ghir_D12G023930 ATUGE1,UGE1 1.5 2.0 0.0 0.0 0.4 0.8 0.0 0.0
Ghir_D12G026480 ATSIG5,SIG5,SIGE 64.4 9.8 6.4 28.1 75.6 15.4 5.6 24.0
Ghir_D13G001020 AtSEC23C 1.9 1.4 1.6 2.2 2.2 2.0 1.4 2.0
Ghir_D13G005430 FLL2 0.0 0.0 0.3 0.1 0.1 0.1 0.0 0.1
Ghir_D13G006450 FLL2 1.6 1.7 1.9 0.9 1.5 1.7 1.7 1.0
Ghir_D13G010310 SAC56 13.8 12.2 12.6 7.5 13.8 11.1 18.5 7.3
Ghir_D13G017060 RGP5,RGP5 5.3 6.9 4.0 2.6 4.3 6.4 4.2 2.2
Ghir_D13G022040 ATNUDT19,ATNUDX19,NUDX19 12.4 7.9 5.4 13.3 14.6 7.7 6.0 14.0
Ghir_D13G024440 DDB2 2.7 2.7 1.4 3.9 3.1 2.6 1.4 4.0

Table S3

Expression level of the hormone related genes"

基因Gene JF914-0d JF914-1d JF914-3d JF914-5d 04-1685-0d 04-1685-1d 04-1685-3d 04-1685-5d
Ghir_A05G018480 3.35 0.35 0.97 0.71 1.05 0.21 1.01 0.64
Ghir_D01G010310 0.36 1.00 9.87 9.04 0.38 0.65 9.54 8.21
Ghir_D05G018480 6.67 0.51 0.80 1.65 4.70 0.51 0.95 3.70
Ghir_A06G022780 0.90 12.83 0.10 0.05 0.49 13.31 1.13 0.06
Ghir_A05G004020 0.59 12.38 684.35 342.12 0.71 4.44 624.00 319.09
Ghir_A06G007640 0.06 24.90 47.09 7.50 0.13 6.82 59.38 3.16
Ghir_A07G001250 0.00 20.27 432.61 403.08 0.26 28.52 578.43 344.64
Ghir_D06G007800 0.06 23.61 30.62 4.46 0.04 5.32 72.94 3.22
Ghir_D06G009100 7.69 7.64 2.81 2.74 7.43 10.80 3.03 1.86
Ghir_D07G001260 0.06 42.18 923.40 796.81 0.42 8.75 892.12 607.89
Ghir_A12G023980 1.12 4.40 67.96 64.17 0.65 0.76 36.46 51.44
Ghir_D12G023960 51.54 74.85 1468.21 1527.31 14.41 12.06 1073.61 1389.37
Ghir_D02G013160 24.30 23.66 0.27 1.44 14.73 22.58 0.58 0.52
Ghir_D03G018940 20.59 14.36 0.27 1.12 31.30 18.19 0.37 0.87
Ghir_D11G011550 0.96 2.53 2.90 1.20 0.62 0.31 3.61 2.03
Ghir_D05G036790 4.96 4.08 26.36 28.09 4.57 2.65 20.39 51.20
Ghir_A11G004510 7.74 12.81 0.40 3.16 5.01 12.71 1.00 0.28
Ghir_D11G004410 13.00 32.39 0.72 4.99 7.73 27.73 0.92 0.56
Ghir_D13G007620 2.64 3.38 1.07 1.61 4.80 4.09 0.45 0.45
Ghir_A04G003200 202.97 177.83 125.29 146.35 174.05 168.09 106.68 86.76
Ghir_D05G036360 2.70 2.10 2.17 1.08 2.77 2.29 1.35 0.17
Ghir_A12G024510 0.47 2.63 3.41 0.25 1.06 0.62 16.73 1.52
Ghir_A03G010240 5.79 5.08 0.13 0.34 8.27 4.43 0.00 0.01
Ghir_D12G027950 81.66 69.07 0.58 2.42 72.95 64.66 1.08 0.23
Ghir_A09G020320 0.24 0.45 0.34 0.39 0.23 0.69 0.62 0.20
Ghir_A09G014150 4.65 4.19 0.51 2.46 6.22 4.45 1.13 0.45
Ghir_D09G013610 7.96 6.79 1.02 3.90 9.77 6.27 1.58 0.67
Ghir_A11G032930 5.25 4.98 0.57 0.71 6.21 6.44 0.46 0.21
Ghir_A05G003480 145.13 219.18 0.08 0.92 219.04 222.37 0.90 0.13
Ghir_A05G010280 148.27 68.77 42.13 52.75 158.04 84.90 53.31 30.03
Ghir_D05G010000 202.78 89.17 86.89 89.03 203.65 110.99 113.36 51.42
Ghir_A09G023900 1.26 2.81 24.07 20.89 0.94 1.41 24.59 34.80
[1] Jin D, Xu Y, Gui H, Zhang H, Dong Q, Sikder R K, Wang X, Yang G, Song M. Evaluation of cotton (Gossypium hirsutum L.) leaf abscission sensitivity triggered by thidiazuron through membership function value. Plants, 2021, 10: 49.
doi: 10.3390/plants10010049
[2] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45: 613-620.
doi: 10.3724/SP.J.1006.2019.84068
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019, 45: 613-620. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84068
[3] 聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298. (in Chinese with English abstract)
[4] 高丽丽, 李淦, 康正华, 李健伟, 王蜜蜂, 马云珍, 张巨松. 脱叶剂对棉花叶片叶绿素荧光动力学参数的影响. 棉花学报, 2016, 28: 345-352.
Gao L L, Li G, Kang Z H, Li J W, Wang M F, Ma Y Z, Zhang J S. Effect of defoliants on chlorophyll fluorescence of cotton leaves. Cotton Sci, 2016, 28: 345-352. (in Chinese with English abstract)
[5] 宋兴虎, 徐东永, 孙璐, 赵文超, 曹龙龙, 张祥, 唐纪元, 韩焕勇, 王洪这, 陈洪章, 王林, 赵冰梅, 杜明伟, 田晓莉, 李召虎. 在不同棉区噻苯隆和乙烯利用量及配比对脱叶催熟效果影响. 棉花学报, 2020, 32: 247-257.
Song X H, Xu D Y, Sun L, Zhao W C, Cao L L, Zhang X, Tang J Y, Han H Y, Wang H Z, Chen H Z, Wang L, Zhao B M, Du M W, Tian X L, Li Z H. Effect of thidiazuron and ethylene use and ratio on defoliation ripening in different cotton area. Cotton Sci, 2020, 32: 247-257. (in Chinese with English abstract)
[6] 张大伟, 魏鑫, 徐海江, 刘忠山, 李春平, 马清倩, 徐建辉. 不同棉花品种对脱叶剂的响应. 新疆农业科学, 2019, 56(1): 146-153.
doi: 10.6048/j.issn.1001-4330.2019.01.018
Zhang D W, Wei X, Xu H J, Liu Z S, Li C P, Ma Q Q, Xu J H. Study on the response of cotton varieties with different genotypes to defoliants. Xinjiang Agric Sci, 2019, 56(1): 146-153. (in Chinese with English abstract)
[7] 王天友. 南疆陆地棉种质资源遗传多样性及对脱叶剂的敏感性分析. 塔里木大学硕士学位论文,新疆阿拉尔, 2020.
Wang T Y. Analysis of Genetic Diversity and Sensitivity to Sefoloant of Upland Cotton Germplasm Resources in Southern Xinjiang. MS Thesis of Tarim University, Aral, Xinjiang, China, 2020. (in Chinese with English abstract)
[8] 周先林, 覃琴, 王龙, 李璐, 胡成成, 洪秀春, 王伟, 朱海勇. 脱叶剂对两种机采模式下棉花脱叶效果及纤维品质的影响. 中国农业科技导报, 2020, 22(11): 144-152.
doi: 10.13304/j.nykjdb.2019.0628
Zhou X L, Qin Q, Wang L, Li L, Hu C C, Hong X C, Wang W, Zhu H Y. Influence of defoliant on defoliation effect and fiber quality of cotton under two kinds of mechanical harvesting modes. J Agric Sci Technol, 2020, 22(11): 144-152. (in Chinese with English abstract)
[9] Suttle J C. Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol, 1988, 86: 241-245.
doi: 10.1104/pp.86.1.241 pmid: 16665874
[10] Li F, Wu Q, Liao B, Yu K, Huo Y, Meng L, Wang S, Wang B, Du M, Tian X, Li Z. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. Int J Mol Sci, 2022, 23: 2696.
doi: 10.3390/ijms23052696
[11] 廖宝鹏, 王崧嫚, 杜明伟, 李芳军, 田晓莉, 李召虎. 棉花不同部位主茎叶对脱叶剂噻苯隆的响应及机理. 棉花学报, 2020, 32: 418-424.
Liao B P, Wang S M, Du M W, Li F J, Tian X L, Li Z H. Responses and underlying mechanisms of different mainstem leaves on cotton to defoliant thidiazuron. Cotton Sci, 2020, 32: 418-424. (in Chinese with English abstract)
[12] 高瑜, 徐娇, 张冰, 孙伟男, 杨细燕. 机采棉化学脱叶伴随着剧烈的乙烯及细胞分裂素信号响应. 棉花学报, 2020, 32: 491-500.
Gao Y, Xu J, Zhang B, Sun W N, Yang X Y. Chemical defoliation of machine-harvested cotton was accompanied by intense ethylene and cytokinin signal responses. Cotton Sci, 2020, 32: 491-500. (in Chinese with English abstract)
[13] Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X, Xu H, Yang X. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538.
doi: 10.1093/jxb/erz036 pmid: 30715415
[14] Jin D, Wang X, Xu Y, Gui H, Zhang H, Dong Q, Sikder R K, Yang G, Song M. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. Int J Mol Sci, 2020, 21: 2738.
doi: 10.3390/ijms21082738
[15] 王晓婧, 李思嘉, 刘瑞显, 张国伟, 杨长琴, 倪万潮. 棉花施用脱叶剂对相邻未着药叶片生理活性的影响. 棉花学报, 2019, 31: 64-71.
Wang X J, Li S J, Liu R X, Zhang G W, Yang C Q, Ni W C. Effect of defoliants application on physiological characters of cotton leaf without defoliants. Cotton Sci, 2019, 31: 64-71. (in Chinese with English abstract)
[16] 高丽丽. 脱叶剂喷施时间对棉花生理调节效应的研究. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2016.
Gao L L. Study of Defoliants Spraying Time on Cotton Physiological Mechanism. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2016. (in Chinese with English abstract)
[17] 朱继杰, 王士杰, 赵红霞, 李妙, 王国印, 聂俊杰, 牛立强, 闫丽丽. 适宜河北省机械采摘的棉花品种筛选研究. 河北农业科学, 2018, 22(4): 60-62.
Zhu J J, Wang S J, Zhao H X, Li M, Wang G Y, Nie J J, Niu L L, Yan L L. Study on screening cotton varieties suitable for mechanical harvest in Hebei province. J Hebei Agric Sci, 2018, 22(4): 60-62. (in Chinese with English abstract)
[18] 朱继杰, 赵红霞, 王士杰, 李妙, 王国印. 不同棉花品种对脱叶剂敏感性研究. 中国棉花, 2018, 45(4): 15-18.
Zhu J J, Zhao H X, Wang S J, Li M, Wang G Y. Study on the sensitivity of different cotton cultivars to defoliant. China Cotton, 2018, 45(4): 15-18. (in Chinese with English abstract)
[19] Xu X, Yuan L, Yang X, Zhang X, Wang L, Xie Q. Circadian clock in plants: linking timing to fitness. J Integr Plant Biol, 2022, 64: 792-811.
doi: 10.1111/jipb.13230
[20] Creux N, Harmer S. Circadian rhythms in plants. Cold Spring Harb Perspect Biol, 2019, 11: a034611.
doi: 10.1101/cshperspect.a034611
[21] Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K N. Role of circadian rhythm in plant system: an update from development to stress response. Environ Exp Bot, 2019, 162: 256-271.
doi: 10.1016/j.envexpbot.2019.02.025
[22] Wahid A, Gelani S, Ashraf M, Foolad M. Heat tolerance in plants: an overview. Environ Exp Bot, 2007, 61: 199-223.
doi: 10.1016/j.envexpbot.2007.05.011
[23] Xu Y, Zhan C, Huang B. Heat Shock Proteins in association with heat tolerance in grasses. Int J Proteom, 2011, 2011: 529648.
[24] Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci, 2013, 14: 9643-9684.
doi: 10.3390/ijms14059643 pmid: 23644891
[25] Hanano S, Domagalska M A, Nagy F, Davis S J. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells, 2006, 11: 1381-1392.
pmid: 17121545
[26] Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genom Biol, 2008, 9: R130.
doi: 10.1186/gb-2008-9-8-r130
[27] Song Q, Ando A, Xu D, Fang L, Zhang T, Hu E, Qiao H, Deng X W, Chen Z J. Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proc Natl Acad Sci USA, 2018, 115: 5606-5611.
doi: 10.1073/pnas.1722068115 pmid: 29735680
[28] Haydon M J, Mielczarek O, Frank A, Román Á, Webb A A. Sucrose and ethylene signaling interact to modulate the circadian clock. Plant Physiol, 2017, 175: 947-958.
doi: 10.1104/pp.17.00592 pmid: 28778922
[29] Mockler T C, Michael T P, Priest H D, Shen R, Sullivan C M, Givan S A, McEntee C, Kay S A, Chory J. The DIURNAL project: DIURNAL and circadian expression profiling, model-based pattern matching, and promoter analysis. Cold Spring Harb Symp Quant Biol, 2007, 72: 353-363.
doi: 10.1101/sqb.2007.72.006 pmid: 18419293
[30] Kou X, Zhao X, Wu B, Wang C, Wu C, Yang S, Zhou J, Xue Z. Auxin response factors are ubiquitous in plant growth and development, and involved in crosstalk between plant hormones: a review. Appl Sci, 2022, 12: 1360.
doi: 10.3390/app12031360
[31] Kamal N M, Gorafi Y S A, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci, 2019, 20: 5837.
doi: 10.3390/ijms20235837
[32] Ahanger M A, Ashraf M, Bajguz A, Ahmad P. Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul, 2018, 37: 1007-1024.
doi: 10.1007/s00344-018-9855-2
[1] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[4] ZHOU Bin-Han, YANG Zhu, WANG Shu-Ping, FANG Zheng-Wu, HU Zan-Min, XU Zhao-Shi, ZHANG Ying-Xin. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses [J]. Acta Agronomica Sinica, 2023, 49(4): 966-977.
[5] XU Zi-Yin, YU Xiao-Ling, ZOU Liang-Ping, ZHAO Ping-Juan, LI Wen-Bin, GENG Meng-Ting, RUAN Meng-Bin. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60 [J]. Acta Agronomica Sinica, 2023, 49(4): 955-965.
[6] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[7] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[8] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[9] HUANG Zhen, WU Qi-Jing, CHEN Can-Ni, WU Xia, CAO Shan, ZHANG Hui, YUE Jiao, HU Ya-Li, LUO Deng-Jie, LI Yun, LIAO Chang-Jun, LI Ru, CHEN Peng. Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(2): 402-413.
[10] ZHU Jin-Yong, LIU Zhen, ZENG Yu-Ting, LI Zhi-Tao, CHEN Li-Min, LI Hong-Yang, SHI Tian-Bin, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification of potato (Solanum tuberosum L.) PAL gene family and its expression analysis in abiotic stress and tuber anthocyanin synthesis [J]. Acta Agronomica Sinica, 2023, 49(11): 2978-2990.
[11] CHEN Wu-Jun, LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin. Identification and analysis of BnKNOX gene family in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(11): 2991-3006.
[12] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[13] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[14] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[15] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .