Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2698-2704.doi: 10.3724/SP.J.1006.2023.24251

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut

GUO Jian-Bin1(), CHENG Liang-Qiang2(), LI Wei-Tao1, LIU Nian1, LUO Huai-Yong1, DING Ying-Bin1, YU Bo-Lun1, CHEN Wei-Gang1, HUANG Li1, ZHOU Xiao-Jing1, LEI Yong1, LIAO Bo-Shou1, JIANG Hui-Fang1()   

  1. 1Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Guizhou Oil Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
  • Received:2022-11-11 Accepted:2023-02-21 Online:2023-10-12 Published:2023-03-01
  • Contact: E-mail: peanutlab@oilcrops.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Guizhou Provincial Science and Technology Project (QKHJC-ZK[2022]YB 290);Open Project Program of the Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs(KF2020008);China Agriculture Research System of MOF and MARA (Peanut, CARS-13-Germplasm Resource Evaluation)

Abstract:

With the increasing size of edible peanuts market, the quality characteristics of edible peanuts have attracted much attention. Sweetness is an important indicator affecting the flavor and taste of edible peanuts, and it mainly comes from sucrose. Increasing sucrose content is the key to the edible peanuts cultivation, and QTL mapping for sucrose content will lay a foundation for molecular breeding of high sucrose content. However, the increase of sucrose content may affect protein and oil content. In this study, a recombinant inbred line population derived from the cross of Xuhua 13 and Zhonghua 6 was developed. The relationships between sucrose and protein as well as oil content were investigated, and QTLs for sucrose content were mapped. The results showed that sucrose content was not significantly correlated with protein content but there was extremely significantly negatively correlated with the content. Sucrose content presented board phenotypic variations among the RILs, ranging from 14.33 mg g-1 to 61.42 mg g-1. Two lines with high protein, low oil content, and medium sucrose content were observed. Ten QTLs on six chromosomes were detected with 4.56%-12.25% of phenotypic variation explained (PVE) among which qSUCA07 could be repeatedly detected in three environments. The results provide an important information for QTLs fine mapping of sucrose content and cultivating edible peanut varieties with excellent traits.

Key words: peanut, oil content, protein content, sucrose content, quantitative trait locus

Table 1

Correlation coefficients of protein, oil content and sucrose content in the RIL population"

环境 性状 蛋白质 含油量 蔗糖
Environment Trait Protein content Oil content Sucrose content
2020WH 蛋白质 Protein content 1 -0.597** -0.169
含油量 Oil content 1 -0.299**
蔗糖 Sucrose content 1
2021WH 蛋白质 Protein content 1 -0.643** -0.132
含油量 Oil content 1 -0.178*
蔗糖 Sucrose content 1
2021QZ 蛋白质Protein content 1 -0.576** -0.021
含油量 Oil content 1 -0.255**
蔗糖 Sucrose content 1
平均 Mean 蛋白质 Protein content 1 -0.647** -0.077
含油量 Oil content 1 -0.443**
蔗糖 Sucrose content 1

Fig. 1

Parents' difference in sucrose content ** indicates significant difference at the 0.01 probability level. XH13: Xuhua 13; ZH6: Zhonghua 6."

Table 2

Descriptive statistical analysis of sucrose content in the RIL population"

环境
Environment
最小值
Min.
最大值
Max.
均值
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
夏皮洛-威尔克检验
Shapiro-Wilk test W (sig.)
2020WH 16.87 57.93 31.21 9.00 0.74 0.09 0.959 (0.000)
2021WH 14.33 61.42 31.58 8.70 0.81 0.77 0.953 (0.000)
2021QZ 14.49 51.11 32.37 6.49 0.49 0.17 0.978 (0.008)

Fig. 2

Phenotypic distributions of sucrose content in the RIL population in three environments The X-axis and Y-axis represents the sucrose content and the frequency, respectively. Dotted arrow: Zhonghua 6, Solid arrow: Xuhua 13. 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou. RIL: recombinant inbred lines."

Table 3

Analysis of variance for sucrose content in the RIL population in three environments"

变异来源 自由度 平方和 均方 F P
Source DF SS MS F-value P-value
环境 Environment 2 134.050 67.025 1.576 0.208
基因型 Genotype 185 20,709.541 111.943 2.633 <0.0001
误差 Error 354 15,050.897 42.517
总计 Total 542 581,263.608

Fig. 3

Chromosome-wise logarithm of the odds (LOD) scores of sucrose content QTLs in the RIL population in three environments 2020WH: 2020 Wuhan; 2021WH: 2021 Wuhan; 2021QZ: 2021 Quanzhou. RIL: recombinant inbred lines."

Table 4

QTLs identified for sucrose content in the RIL populations in three environments"

QTL 染色体
Chromosome
环境
Environment
位置
Position (cM)
置信区间
Confidence interval
LOD值
LOD value
加性效应
Additive effect
贡献率
PVE (%)
qSUCA01.1 A01 2020WH 5.11 4.7-7.0 2.62 -1.94 4.60
qSUCA01.2 A01 2020WH 16.01 14.1-17.5 3.00 -2.09 5.23
qSUCA07 A07 2020WH 1.01 0-3.3 6.81 3.21 12.25
2021WH 0.01 0-2.7 4.23 2.49 7.70
2021QZ 0.01 0-3.0 3.51 1.79 7.05
qSUCA10 A10 2020WH 63.70 56.0-64.7 3.60 -2.10 7.14
qSUCB01 B01 2021WH 3.51 0.8-10.9 2.73 -2.06 4.94
qSUCB03.1 B03.1 2020WH 64.81 60.3-66.1 2.70 2.00 4.81
qSUCB10.1 B10 2021QZ 35.71 34.8-37.5 5.47 -2.29 11.45
qSUCB10.2 B10 2021QZ 45.21 43.2-45.6 4.18 -1.98 8.88
qSUCB10.3 B10 2021WH 60.51 59.5-60.7 2.51 -1.95 4.56
qSUCB10.4 B10 2021WH 68.81 67.5-72.7 3.30 -2.22 6.20
[1] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 中国油脂, 2020, 45(11): 116-122.
Zhang L W, Wang L W. Development status, existing problems and policy recommendations of peanut industry in China. Chin Oils Fats, 2020, 45(11): 116-122 (in Chinese with English abstract).
[2] 王建文, 李永军, 赵国建, 李绍伟. 鲜食花生的发展前景、存在问题及发展对策探讨. 陕西农业科学, 2009, 55(2): 129-130.
Wang J W, Li Y J, Zhao J G, Li S W. Discussion on the development perspectives, problems and development countermeasures of fresh peanut. Shaanxi J Agric Sci, 2009, 55(2): 129-130. (in Chinese with English abstract)
[3] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生籽仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018, 19: 875-886.
doi: 10.13430/j.cnki.jpgr.20180110001
Fang Y J, Sun Z Q, Miao L J, Qi F Y, Huang B Y, Zheng Z, Dong W Z, Tang F S, Zhang X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. J Plant Genet Resour, 2018, 19: 875-886. (in Chinese with English abstract)
[4] 王强. 粮油加工适宜性评价及风险监控. 北京: 科学出版社, 2018. pp 71-94.
Wang Q. Suitability Evaluation and Risk Monitoring of Grain and Oil Processing. Beijing: Science Press, 2018. pp 71-94. (in Chinese)
[5] 郭曼莉, 李晓彤, 吴澎, 赵路苹, 丁秀臻, 李向阳. 花生加工副产物的综合利用及精深加工. 粮油食品科技, 2018, 26(3): 27-31.
Guo M L, Li X T, Wu P, Zhao L P, Ding X Z, Li X Y. Comprehensive utilization and intensive processing of by-products during peanut processing. Sci Technol Cereals Oils Foods, 2018, 26(3): 27-31. (in Chinese with English abstract)
[6] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757-763.
doi: 10.1021/jf9910741
[7] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47: 332-341.
doi: 10.3724/SP.J.1006.2021.04106
Lei Y, Wang Z H, Huai D X, Gao H Y, Yan L Y, Li J G, Li W T, Chen Y N, Kang Y P, Liu H L, Wang X, Xue X M, Jiang H F, Liao B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agron Sin, 2021, 47: 332-341 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04106
[8] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L. Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016, 38: 666-671 (in Chinese with English abstract)
[9] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018, 50(6): 159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. A near infrared spectroscopy model for predicting sucrose content of sun-dried peanut seeds. Shandong Agric Sci, 2018, 50(6): 159-162 (in Chinese with English abstract).
[10] 赵赓九, 胡晖, 刘红芝, 王强. 鲜食花生品质评价和贮藏加工研究进展. 食品科学, 2023, 44: 314-320.
Zhao G J, Hu H, Liu H Z, Wang Q. Progress in quality evaluation, storage and processing of fresh peanut. Foods Sci, 2023, 44: 314-320. (in Chinese with English abstract)
[11] 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选. 中国农业科学, 2022, 55: 641-653.
doi: 10.3864/j.issn.0578-1752.2022.04.002
Bian N F, Sun D L, Gong J L, Wang X, Xing X H, Jin X H, Wang X J. Evaluation of edible quality of roasted peanuts and indexes screening. Sci Agric Sin, 2022, 55: 641-653. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.04.002
[12] 秦利, 刘华, 张新友, 杜培, 代小冬, 孙子淇, 齐飞艳, 董文召, 黄冰艳, 韩锁义, 张忠信, 徐静. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析. 中国油料作物学报, 2021, 43: 590-599.
Qin L, Liu H, Zhang X Y, Du P, Dai X D, Sun Z Q, Qi F Y, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Xu J. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population. Chin J Oil Crop Sci, 2021, 43: 590-599. (in Chinese with English abstract)
[13] 李威涛. 花生蔗糖含量QTL定位及相关基因表达分析. 中国农业科学院博士学位论文, 北京, 2021.
Li W T. QTL Mapping and Gene Expression Analysis for Sucrose Content in Peanut. PhD Dissertation of China Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[14] 秦利, 韩锁义, 刘华. 我国食用花生研究现状. 江苏农业科学, 2015, 43 (11): 4-7.
Qin L, Han S Y, Liu H. Research status of edible peanuts in china. Jiangsu Agric Sci, 2015, 43 (11): 4-7. (in Chinese)
[15] Bishi S K, Lokesh K, Dagla M C, Mahatma M K, Rathnakumar A L, Lalwani H B, Misra J B. Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crop Prod, 2013, 51: 46-50.
doi: 10.1016/j.indcrop.2013.08.050
[16] Bishi S K, Lokesh K, Mahatma M K, Khatediya N, Chauhan S M, Misra J B. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem, 2015, 167: 107-114.
doi: 10.1016/j.foodchem.2014.06.076 pmid: 25148966
[17] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷锋, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[18] 陈淼, 侯名语, 崔顺立, 李振, 穆国俊, 刘盈茹, 李秀坤, 刘立峰. 不同种皮颜色花生糖含量近红外模型的构建. 光谱学与光谱分析, 2022, 42: 2896-2902.
Chen M, Hou M Y, Cui S L, Li Z, Mu G J, Liu Y R, Li X K, Liu L F. Construction of near-infrared model of peanut sugar content in different seed coat colors. Spectrosc Spect Anal, 2022, 42: 2896-2902. (in Chinese with English abstract)
[19] 张晓军, 赵瑞华, 于晓娜, 司彤, 邹小霞, 王月福, 王铭伦. 花生籽仁可溶性糖含量相关位点的分子标记方法及其应用. 中国专利: 202010304681.6, 2020-06-26.
Zhang X J, Zhao R H, Yu X N, Si T, Zou X X, Wang Y F, Wang M L. Identification and application molecular markers of soluble sugar content in peanut seeds. China patent: 202010304681.6, 2020-06-26. (in Chinese)
[20] 郭建斌, 李威涛, 罗怀勇, 陈伟刚, 喻博伦, 黄莉, 刘念, 周小静, 姜慧芳. 花生种子大小相关性状QTL定位及与出仁率的关系. 植物遗传资源学报, 2022, 23: 1465-1473.
doi: 10.13430/j.cnki.jpgr.20220323002
Guo J B, Li W T, Luo H Y, Chen W G, Yu B L, Huang L, Liu N, Zhou X J, Jiang H F. QTL mapping for seed size related traits and its relationship with shelling percentage in peanut. J Plant Genet Resour, 2022, 23: 1465-1473. (in Chinese with English abstract)
[21] Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020, 133: 37-49.
doi: 10.1007/s00122-019-03438-6
[22] Wang S D, Liu S L, Wang J, Kengo Y, Zhou B, Yu Y C, Liu Z, Wolf B F, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Nat Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[1] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[2] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[3] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[4] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[5] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[6] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[7] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[8] ZHOU Hai-Ping, ZHANG Fan, CHEN Kai, SHEN Cong-Cong, ZHU Shuang-Bing, QIU Xian-Jin, XU Jian-Long. Identification of rice blast resistance in xian and geng germplasms by genome- wide association study [J]. Acta Agronomica Sinica, 2023, 49(5): 1170-1183.
[9] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[10] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[11] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[12] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[13] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[14] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[15] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .