Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2935-2948.doi: 10.3724/SP.J.1006.2023.24276

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mining candidate genes related to soybean regeneration based on BSA-seq method

ZHAO Yu-Jing1(), ZHANG Bin-Shuo1, SU An-Yu2, YU Zhen-Hai1, LI Jia-Huan1, LIN Yang1, ZHANG Yan-Ting1, WU Xiao-Xia1,*(), ZHAO Ying1,*()   

  1. 1College of Agronomy, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-12-12 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-12
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    National Natural Science Foundation of China(31971899);National Natural Science Foundation of China(32272093);National Key Research and Development Program of China(2021YFD120160204);National Key Research and Development Program of China(2021YFD12011040202);Heilongjiang Natural Science Foundation(TD2022C003);Heilongjiang Natural Science Foundation(JJ2022YX0475)

Abstract:

Transgenic breeding technology can improve soybean directionally, and provide a new idea for improving soybean yield. In order to search for the genes related to soybean regeneration, explore the rules of soybean regeneration, and improve the efficiency of genetic transformation, we conducted soybean organogenesis experiment with 200 materials including DN50 (a material with strong regeneration ability), Keburi (a material with weak regeneration ability), and RILs of its offspring with strong regeneration ability. Compared the differences in regeneration ability between different genotypes, 20 extreme materials each were screened. Preliminary localization of soybean regeneration candidate genes by BSA-seq (bulked segregant analysis sequencing) technology, 88.04 G clean data were obtained in the 2 Mb interval with an average sequencing depth of 20.03 ×. The differentially expressed genes were mainly enriched in 20 items such as cellulose microfiber tissue, plant type cell wall tissue, or biogenesis, among which there were 6 genes in plant type cell wall tissue or biogenesis item significantly enriched. The tissue expression analysis of 6 genes showed that the relative expression level was high during cluster bud elongation, which indicating that it played a role in the process of soybean regeneration and might be the key gene affecting soybean regeneration. This study provides the basic materials for breeding new regenerated soybean varieties, and confirms the feasibility of BSA-seq technology in mining regenerated genes.

Key words: soybean, regeneration, organogenesis, BSA-seq

Fig. 1

Flow chart of organogenesis test A: seed germination; B, C: clustered bud induction; D: clumps of buds elongated; E, F: rooting culture."

Fig. 2

DN50 and Keburi growth during different periods A, D: adventitious shoots induction; B, E: adventitious shoots elongation; C, F: rooting situation. Bar: 1 cm."

Fig. 3

Growth of clustered buds of DN50 and Keburi under microscope A: DN50; B: Keburi. The red triangles are marked with clustered buds."

Fig. 4

Comparison of regeneration indexes of parents RP: regenerative potential; RA: regenerative ability; RE: regenerative efficiency; RR: regenerative rate. P-values are tested by a two-tailed t-test assuming equal variances. **P < 0.01, *P < 0.05."

Fig. 5

Growth of extreme materials in different periods a: regenerative good materials; b: regenerative poor materials. A, D: adventitious shoots induction; B, E: adventitious shoots elongation; C, F: rooting situation. Bar: 1 cm."

Fig. 6

Growth of clustered buds of extreme materials under microscope A: regenerative good materials; B: regenerative poor materials. The red triangles are marked with clustered buds."

Fig. 7

Data statistics of sub generation materials A: the regenerative potential; B: the regenerative capacity; C: the regenerative efficiency; D: the regeneration rate."

Table 1

Principal component feature vector and contribution rate"

性状
Trait
主成分Comprehensive index
F1 F2
再生潜力Regeneration potential -0.07 0.99
再生能力Regeneration ability 0.57 -0.10
再生效率Regeneration efficiency 0.58 0.08
再生率Regeneration rate 0.58 0.03
特征值Eigen values 2.81 1.02
贡献率Contributive ratio (%) 70.15 25.42
累计贡献率Cumulative contributive ratio (%) 70.15 95.57

Table 2

Principal component value, membership function value, and D-value of extreme materials"

株系
Strain line
主成分
Comprehensive index
隶属函数
Membership function
D
D-value
综合评价
Comprehensive valuation
F1 F2 F1* F2*
Z14 9.05 -0.34 1.00 0.36 6.55 强再生Strong regenerative ability
Z6 7.22 2.47 0.82 0.95 5.95 强再生Strong regenerative ability
Z1 6.22 -0.6 0.72 0.30 4.41 强再生Strong regenerative ability
Z142 5.51 -0.58 0.65 0.31 3.88 强再生Strong regenerative ability
Z20 5.02 -0.14 0.60 0.40 3.65 强再生Strong regenerative ability
Z77 4.10 2.32 0.51 0.92 3.63 强再生Strong regenerative ability
Z168 4.33 0.76 0.53 0.59 3.38 强再生Strong regenerative ability
Z2 5.22 -1.75 0.62 0.06 3.36 强再生Strong regenerative ability
Z35 5.07 -1.53 0.61 0.11 3.32 强再生Strong regenerative ability
Z98 4.38 0.08 0.54 0.45 3.24 强再生Strong regenerative ability
Z16 4.04 -0.94 0.50 0.23 2.72 强再生Strong regenerative ability
Z3 3.69 -0.01 0.47 0.43 2.70 强再生Strong regenerative ability
Z155 3.56 0.11 0.46 0.45 2.64 强再生Strong regenerative ability
Z53 3.25 0.49 0.42 0.53 2.52 强再生Strong regenerative ability
Z30 3.12 0.71 0.41 0.58 2.48 强再生Strong regenerative ability
Z184 2.36 1.84 0.34 0.82 2.22 强再生Strong regenerative ability
Z176 2.93 0.10 0.39 0.45 2.18 强再生Strong regenerative ability
Z4 3.12 -0.80 0.41 0.26 2.08 强再生Strong regenerative ability
Z52 2.49 0.26 0.35 0.49 1.90 强再生Strong regenerative ability
Z149 2.37 0.53 0.34 0.54 1.88 强再生Strong regenerative ability
Z39 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z153 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z180 -0.71 -1.88 0.03 0.03 -1.03 弱再生Weak regenerative ability
Z152 -0.73 -1.63 0.03 0.08 -0.97 弱再生Weak regenerative ability
Z95 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z161 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z165 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z193 -0.74 -1.47 0.03 0.12 -0.94 弱再生Weak regenerative ability
Z44 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z84 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z147 -0.76 -1.22 0.03 0.17 -0.88 弱再生Weak regenerative ability
Z197 -0.77 -1.14 0.03 0.19 -0.87 弱再生Weak regenerative ability
Z25 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z62 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z96 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z108 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z111 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z120 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z127 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability
Z129 -0.77 -1.05 0.03 0.21 -0.85 弱再生Weak regenerative ability

Table S1

Sequence comparison of different samples"

样本
Sample
原始
序列数
Raw reads
原始碱基数
Raw bases
过滤后
序列数
Clean reads
过滤后
碱基数
Cleans bases
GC含量
Clean_GC_Rate%
Clean Q30% 平均
测序深度
Average depth
基因组
覆盖率
genome coverage (1X)
基因组
覆盖率
genome coverage (5X)
DN50 150971394 22796680494 148291154 22248395146 35.0791 89.6463 20.25 95.57 93.65
Keburi 145486518 21968464218 143073908 21437801507 35.8134 88.8524 19.87 95.76 93.87
高池Highly pool 151202346 22831554246 147403650 22105336093 35.173 89.5264 19.79 96.75 95.01
低池Lowly pool 151325210 22850106710 148367314 22245451907 35.4202 90.2708 20.22 96.73 94.96

Fig. 8

Distribution of ED correlation values on chromosomes The abscissa is the chromosome name; the colored dots represent the ED value of each SNP site; the black line is the ED value after fitting; the red dashed line represents the significance association threshold; the higher the ED value, the better the point association effect."

Table 3

Information in the gene region by association analysis"

染色体号
Chromosome ID
起始位置
Start position
终止位置
End position
区间距离
Size (Mb)
基因数目
Number of genes
Chr. 18 54560000 55560000 1 185
Chr. 18 55910000 56910000 1 194
总计Total 2 379

Fig. 9

GO annotated cluster map of genes in candidate regions"

Table S2

Candidate gene annotation"

基因号
Gene ID
NCBI登录号
RefSeq ID
物理位置Physical position
(bp)
拟南芥同源基因Arabidopsis homologous gene CDS
长度
CDS length (bp)
氨基酸
长度
ORF (aa)
分子量
大小
Molecular weight
(kD)
pI 亚细胞定位预测Subcellular localization prediction 基因注释
Gene function prediction
Glyma.18G260900 XM_003552487.5 Gm18:54674591-54677015 AT3G29030 798 266 29.1 9.51 细胞壁
Cell wall
Pollen allergen (Pollen_allerg_1)
Glyma.18G265400 XM_041012184.1 Gm18: 55017312-55018922 AT5G39280 687 229 25.26 8.66 细胞壁
Cell wall
EXPANSIN-A21-RELATED
Glyma.18G271900 XM_014770962.3 Gm18: 55493601-55497764 AT5G60920 1263 421 47.06 9.64 细胞膜
Cell membrane
COBRA-LIKE EXTRACELLULAR GLYCOSYL-PHOSPHATIDYL INOSITOL-ANCHORED FAMILY PROTEIN-RELATED
Glyma.18G272000 XM_003552552.4 Gm18: 55503155-55508039 AT5G60920 1347 449 49.87 8.9 细胞膜
Cell membrane
COBRA-like protein (COBRA)
Glyma.18G272100 NM_001255848.2 Gm18: 55506268-55509726 AT5G15630 1296 432 48.44 9 细胞膜
Cell membrane
COBRA-LIKE PROTEIN 4
Glyma.18G272200 XM_003552554.5 Gm18: 55515800-55518328 AT3G02230 1062 354 40.12 5.61 高尔基体
Golgi apparatus
UDP-ARABINOPYRANOSE MUTASE 1-RELATED

Fig. 10

Relative expression pattern of candidate genes in different materials at different stages I-0: SIM-0; I-14: SIM-14; E-3: SEM-3; E-5: SEM-5; E-7: SEM-7; E-14: SEM-14. * and ** indicate significantly different at the 0.05 and 0.01 probability levels, respectively."

[1] Cheng T Y, Saka H, Voqui-dinh T H. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci Lett, 1980, 19: 91-99.
doi: 10.1016/0304-4211(80)90084-X
[2] Wright M S, Ward D V, Hinchee M A, Carnes M G, Kaufman R J. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep, 1987, 6: 83-89.
doi: 10.1007/BF00276659 pmid: 24248483
[3] Barwale U B, Kerns H R, Widholm J M. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta, 1986, 167: 473-481.
doi: 10.1007/BF00391223 pmid: 24240363
[4] Kim J, Lamotte C E, Hack E. Plant regeneration in vitro from primary leaf nodes of soybean (Glycine max) seedlings. J Plant Physiol, 1990, 136: 664-669.
doi: 10.1016/S0176-1617(11)81341-6
[5] 武小霞, 孙晶, 苏安玉, 李静, 刘明, 张彬彬, 李冬梅, 李文滨. 大豆再生抑制消减杂交文库的构建. 东北农业大学学报, 2014, 45(7): 38-44.
Wu X X, Sun J, Su A Y, Li J, Liu M, Zhang B B, Li D M, Li W B. Soybean regeneration inhibits the construction of a subtractive hybrid library. J Northeast Agric Univ, 2014, 45(7): 38-44 (in Chinese with English abstract).
[6] Kartha K K, Pahl K P, Leung N L, Mroginski L A J B. Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Botany, 1981, 59: 1671-1679.
[7] Paz M M, Martinez J C, Kalvig A B, Fonger T M, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep, 2006, 25: 206-213.
doi: 10.1007/s00299-005-0048-7
[8] 王怡婷, 赵莹, 李思琪, 于耸, 郑志民. 大豆U6启动子(YT9)在CRISPR/Cas9基因组编辑体系中的功能分析. 分子植物育种, 2023, 21: 1189-1195.
Wang Y T, Zhao Y, Li S Q, Yu S, Zheng Z M. Functional analysis of the soybean U6 promoter (YT9) in CRISPR/Cas9 genome editing systems. Mol Plant Breed, 2023, 21: 1189-1195 (in Chinese with English abstract).
[9] Li S, Cong Y, Liu Y, Wang T, Shuai Q, Chen N, Gai J, Li Y. Optimization of agrobacterium-mediated transformation in soybean. Front Plant Sci, 2017, 8: 246.
[10] Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283: 1911-1914.
doi: 10.1126/science.283.5409.1911 pmid: 10082464
[11] Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0
[12] Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081
[13] Zuo J, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[14] Leibfried A, To J P, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005, 438: 1172-1175.
doi: 10.1038/nature04270
[15] Mayer K F, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805-815.
doi: 10.1016/s0092-8674(00)81703-1 pmid: 9865698
[16] Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561-22571.
doi: 10.1073/pnas.2015248117
[17] Matsuo N, Makino M, Banno H. Arabidopsis ENHANCER OF SHOOT REGENERATION (ESR)1 and ESR2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Sci, 2011, 181: 39-46.
doi: 10.1016/j.plantsci.2011.03.007 pmid: 21600396
[18] Banno H, Ikeda Y, Niu Q W, Chua N H. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell, 2001 13: 2609-2618.
[19] 蔡英卿. 龙眼体胚发生过程中SERK等胚性相关基因的克隆与表达分析. 福建农林大学博士学位论文,福建福州, 2011.
Cai Y Q. Cloning and Expression Analysis of Embryonic Genes Such as SERK during Longan Embryogenesis. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2011 (in Chinese with English abstract).
[20] Lutz K A, Martin C, Khairzada S, Maliga P. Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Rep, 2015, 34: 1849-1856.
doi: 10.1007/s00299-015-1832-7
[21] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[22] Li S N, Cheng P, Bai Y Q, Shi Y, Yu J Y, Li R C, Zhou R N, Zhang Z G, Wu X X, Chen Q S. Analysis of soybean somatic embryogenesis using chromosome segment substitution lines and transcriptome sequencing. Genes (Basel), 2019, 10: 943.
doi: 10.3390/genes10110943
[23] 曾维英, 苏燕竹, 赖振光, 杨守臻, 陈怀珠, 谭玉荣, 孙祖东, 盖钧镒. 基于BSA-Seq技术鉴定大豆耐荫性状相关候选基因. 中国油料作物学报, 2021, 43: 1006-1015.
Zeng W Y, Su Y Z, Lai Z G, Yang S Z, Chen H Z, Tan Y R, Sun Z D, Gai J Y. Identification of candidate gene controlling shade- tolerant by BSA-Seq in soybean. Chin J Oil Crop Sci, 2021, 43: 1006-1015 (in Chinese with English abstract).
[24] 张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因. 作物学报, 2020, 46: 1839-1849.
doi: 10.3724/SP.J.1006.2020.04075
Zhang Z H, Wang J, Liu Z X, Qiu L J. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-seq in soybean (Glycine max L.). Acta Agron Sin, 2020, 46: 1839-1849 (in Chinese with English abstract).
[25] 严昕, 项超, 刘荣, 李冠, 李孟伟, 李正丽, 宗绪晓, 杨涛. 基于BSA-seq技术对豌豆花色基因的精细定位. 作物学报, 2023, 49: 1006-1015.
doi: 10.3724/SP.J.1006.2023.24055
Yan X, Xiang C, Liu R, Li G, Li M W, Li Z L, Zong X X, Yang T, Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique. Acta Agron Sin, 2023, 49: 1006-1015 (in Chinese with English abstract).
[26] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet, 2018, 131: 525-538.
doi: 10.1007/s00122-017-3016-z pmid: 29138903
[27] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47: 1460-1471.
doi: 10.3724/SP.J.1006.2021.04195
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agron Sin, 2021, 47: 1460-1471 (in Chinese with English abstract).
[28] 李毅丰. 番茄节间长度主效基因定位及候选基因生物信息学分析. 河北科技师范学院硕士学位论文,河北秦皇岛, 2022.
Li Y F. Mapping of Major Genes and Bioinformatics Analysis of Candidate Genes in Tomato Internode Length. MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2022 (in Chinese with English abstract).
[29] 蒋家焕, 朱永生, 陈丽萍, 郑燕梅, 蔡秋华, 谢华安, 王爱荣, 张建福. 利用BSA-Seq方法定位一个水稻早衰相关基因OsBRCA1. 福建农业学报, 2022, 37(2): 131-137.
Jiang J H, Zhu Y S, Chen L P, Zheng Y M, Cai Q H, Xie A H, Wang A R, Zhang J F. Mapping of early senescence-related OsBRCA1 in rice by BSA-seq technique. Fujian J Agric Sci, 2022, 37(2): 131-137 (in Chinese with English abstract).
[30] 王雪彬, 张健, 韦燕燕, 罗继景, 梁云涛, 蔡中全. 基于BSA-seq的水稻耐陈化QTL定位分析. 分子植物育种, 2021. 2021-11-05. https://kns.cnki.net/kcms/detail/46.1068.S.20211104.1822.015.html.
Wang X B, Zhang J, Wei Y Y, Luo J J, Liang Y T, Cai Z Q. QTLs Mapping on rice grain aging tolerance based on BSA-seq. Mol Plant Breed, 2021. 2021-11-05. https://kns.cnki.net/kcms/detail/46.1068.S.20211104.1822.015.html (in Chinese with English abstract).
[31] 周雨晴, 郭宇玲, 伊然, 陈壁融, 杨羽清, 潘玉朋. 基于BSA-Seq的黄瓜重要园艺性状遗传定位研究进展. 分子植物育种, 2022. 2022-07-05. https://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html.
Zhou Y Q, Guo Y L, Yi R, Chen B R, Yang Y Q, Pan Y P. Research progress on genetic mapping of cucumber important horticultural traits based on BSA-Seq. Mol Plant Breed, 2022. 2022-07-05. https://kns.cnki.net/kcms/detail/46.1068.S.20220704.0904.002.html (in Chinese with English abstract).
[32] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013, 23: 687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[33] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[34] Omatsuda T, Ohyama K. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor Appl Genet, 2004 75: 695-700.
[35] 曹劲宏, 牟少萌, 何雪, 赵波, 杨凯, 李奕松, 李玮瑜, 万平. 不同基因型小豆胚尖再生能力筛选和培养条件优化. 分子植物育种, 2015, 13: 106-118.
Cao J H, Mou S M, He X, Zhao B, Yang K, Li Y S, Li W Y, Wan P. Screening on regeneration capacity of embryonic tip from different genotypes of adzuki bean (Vigna angularis) and optimizing on culture condition. Mol Plant Breed, 2015 13: 106-118 (in Chinese with English abstract).
[36] 武小霞, 李静, 姜成涛, 刘伟婷, 刘淼, 李文滨. 大豆子叶节再生中植物生长调节剂浓度及基因型筛选. 中国油料作物学报, 2011, 33: 123-129.
Wu X X, Li J, Jiang C T, Liu W T, Liu M, Li W B. Optimization of regeneration system from soybean cotyledonary node. Chin J Oil Crop Sci, 2011, 33: 123-129 (in Chinese with English abstract).
[37] 滕卫丽, 郑立娜, 张琦, 赵雪, 韩英鹏, 李文滨. 大豆再生相关性状QTL定位. 东北农业大学学报, 2021, 52(4): 1-10.
Teng W L, Zheng L N, Zhang Q, Zhao X, Han Y P, Li W B. QTL mapping of traits correlated with regeneration in soybean. J Northeast Agric Univ, 2021, 52(4): 1-10 (in Chinese with English abstract).
[38] 李换丽, 王丹, 张树伟, 雷佳, 吴霞, 王新胜, 马燕斌. 山西不同大豆品种再生体系的筛选. 山西农业科学, 2020, 48(2): 161-166.
Li H L, Wang D, Zhang S W, Lei J, Wu X, Wang X S, Ma Y B. Selection of soybean regeneration system with different verieties in Shanxi. J Shanxi Agric Sci, 2020, 48(2): 161-166 (in Chinese with English abstract).
[39] Roudier F O, Fernandez A G, Fujita M, Himmelspach R, Borner G H H, Schindelman G, Song S, Baskin T I, Dupree P, Wasteneys G O, Benfey P N. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell, 2005, 17: 1749-1763.
doi: 10.1105/tpc.105.031732
[40] Ko J H, Kim J H, Jayanty S S, Howe G A, Han K H. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana. J Exp Bot, 2006, 57: 2923-2936.
doi: 10.1093/jxb/erl052
[41] Sindhu A, Langewisch T, Olek A, Multani D S, McCann M C, Vermerris W, Carpita N C, Johal G. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol, 2007, 145: 1444-1459.
doi: 10.1104/pp.107.102582 pmid: 17932309
[42] Zhang W, Yan H, Chen W, Liu J, Jiang C, Jiang H, Zhu S, Cheng B. Genome-wide identification and characterization of maize expansin genes expressed in endosperm. Mol Genet Genomics, 2014, 289: 1061-1074.
doi: 10.1007/s00438-014-0867-8 pmid: 25213600
[43] Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep, 2016, 35: 949-965.
doi: 10.1007/s00299-016-1948-4 pmid: 26888755
[44] Fleming A J, McQueen-mason S J, Mandel T, Kuhlemeier C J S. Induction of leaf primordia by the cell wall protein expansin. Science, 1997, 276: 1415-1418.
doi: 10.1126/science.276.5317.1415
[45] Zavaliev R, Sagi G, Gera A, Epel B L. The constitutive expression of Arabidopsis plasmodesmal-associated class 1 reversibly glycosylated polypeptide impairs plant development and virus spread. J Exp Bot, 2009, 61: 131-142.
doi: 10.1093/jxb/erp301
[46] Gallardo K, Le Signor C, Vandekerckhove J, Thompson R D, Burstin J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol, 2003, 133: 664-682.
pmid: 12972662
[47] Sumiyoshi M, Inamura T, Nakamura A, Aohara T, Ishii T, Satoh S, Iwai H. UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). Plant Cell Physiol, 2014, 56: 232-241.
doi: 10.1093/pcp/pcu132
[1] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[2] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[3] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[4] YAN Xin, XIANG Chao, LIU Rong, LI Guan, LI Meng-Wei, LI Zheng-Li, ZONG Xu-Xiao, YANG Tao. Fine mapping of flower colour gene in pea (Pisum sativum L.) based on BSA-seq technique [J]. Acta Agronomica Sinica, 2023, 49(4): 1006-1015.
[5] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[6] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[7] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[8] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[9] NIU Zhi-Yuan, QIN Chao, LIU Jun, WANG Hai-Ze, LI Hong-Yu. Function analysis of different Cas9 promoters on the efficiency of CRISPR/Cas9 system in soybean [J]. Acta Agronomica Sinica, 2023, 49(12): 3227-3238.
[10] ZHANG Hong-Mei, XIONG Ya-Wen, XU Wen-Jing, ZHANG Wei, WANG Qiong, LIU Xiao-Qing, LIU Hui, CUI Xiao-Yan, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for amino acid content at R6 stage in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2023, 49(12): 3277-3288.
[11] LI Jia-Jia, LONG Qun, ZHU Shang-Shang, SHAN Ya-Jing, WU Mei-Yan, LU Yun, ZHI Xian-Guan, LIAO Wei, CHEN Hao-Ran, ZHAO Zhen-Bang, MIAO Long, GAO Hui-Hui, LI Ying-Hui, WANG Xiao-Bo, QIU Li-Juan. Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 2863-2875.
[12] GAO Chao, CHEN Ping, DU Qing, FU Zhi-Dan, LUO Kai, LIN Ping, LI Yi-Ling, LIU Shan-Shan, YONG Tai-Wen, YANG Wen-Yu. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 3090-3099.
[13] YANG Hao, XIANG Shi-Hua, LIU Li, NING Ke-Jun, YANG Xue, SHU Ying-Jie, HE Qing-Yuan. Genome-wide association analysis of growth period traits in soybean of Sichuan and Chongqing [J]. Acta Agronomica Sinica, 2023, 49(10): 2727-2737.
[14] SUN Jian-Qiang, HONG Hui-Long, ZHANG Yong, GU Yong-Zhe, GAO Hua-Wei, ZHOU Ya, CAO Jie, QI Hang, ZHAO Quan, BAO Li-Gao, CHEN Qing-Shan, QIU Li-Juan. Mapping of stable QTL qSW20-1 for 100-seed weight and its effect on yield and quality in soybean [J]. Acta Agronomica Sinica, 2023, 49(10): 2621-2632.
[15] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .