Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (2): 365-376.doi: 10.3724/SP.J.1006.2023.12076

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of rice mutants by gene editing of OsNAC2d and their response to drought stress

LI Zhao-Wei1,2(), MO Zu-Yi1,2, SUN Cong-Ying1,2, SHI Yu1,2, SHANG Ping2,3, LIN Wei-Wei1,2, FAN Kai2,3, LIN Wen-Xiong1,2,*()   

  1. 1College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-11-05 Accepted:2022-06-07 Online:2022-07-08 Published:2022-11-21
  • Contact: LIN Wen-Xiong E-mail:lizw197@163.com;wenxiong181@163.com
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J01098);Natural Science Foundation of Fujian Province(2022J01142)

Abstract:

The main objective of this study is to explore the biological function of transcription factor OsNAC2d and its effect on drought resistance in rice. The sequence of OsNAC2d was firstly edited in japonica variety Zhonghua 11 through the CRISPR/Cas9 technology. The agronomic traits of osnac2d mutants were investigated in normal field cultivation, and the growth status and relative expression level of OsNAC2d genes were performed in the young mutant seedlings under the drought condition. There was the higher expression level of OsNAC2d in grain, leaf, and anther than those in root and stem, and the relative expression of OsNAC2d was enhanced by drought stress. Six homozygous T2 osnac2d lines were identified in two editing target sites of OsNAC2d genomic sequence through the nucleotide sequencing technology. There was no significant difference between osnac2d mutants and wild type in the agronomic traits including plant height, effective panicle number per plant, panicle length, grain number per panicle, seed setting rate, 1000-grain weight, and grain yield per plant. Under the drought condition, the growth of roots and seedling of osnac2d mutants were depressed, and the biomass of roots and above-ground were also decreased. Meanwhile, the relative expression of OsNAC2d in the osnac2d mutant retained as extremely low level as those in the normal cultivating condition. However, the relative expression of OsNAC2d in wild type was enhanced by drought stress, and the growth and biomass accumulation of wild type were not evidently hindered by drought stress. These results indicated that OsNAC2d positively regulated the drought response in rice. The osnac2d mutants in this present study provided a precious genetic resource for deeply revealing the biological function of OsNAC2d and its fine regulating mechanism in response to drought stress.

Key words: rice, drought stress, gene editing, OsNAC2d gene

Fig. 2

Target sites of the gRNA in the OsNAC2d gene and recombining diagram of the pYLCRISPR/Cas9-OsNAC2d-T12 vector A: the position and nucleotide sequences of two gRNA targets in the OsNAC2d gene locus; B: the recombining diagram of two gRNA cassettes and pYLCRISPR/Cas9-MT vector."

Table 1

Nucleotide sequence and corresponding primer sequences used in this study"

引物名称Primer name 引物序列Primer sequence (5'-3') 用途Usage
OsNAC2d-T1-fwd gccgTCCATGGCGGCACGCTCAG 靶点1序列
Sequence of target site 1
OsNAC2d-T1-rev aaacCTGAGCGTGCCGCCATGGA
OsNAC2d-T2-fwd gttgGTGGCACTAGAGCTGCAGT 靶点2序列
Sequence of target site 2
OsNAC2d-T2-rev aaacACTGCAGCTCTAGTGCCAC
OsNAC2d-T1-F TCGTCTCCCGCTACCTTCT 靶点1检测
Sequencing for target 1
OsNAC2d-T1-R GCGTACTCGTGCATAACCC
OsNAC2d-T2-F AGAACTCCTACGACCTAATGGC 靶点2检测
Sequencing for target 2
OsNAC2d-T2-R ATGTCCGACGCACGCAGAG
Hyp-F ACGGTGTCGTCCATCACAGTTTGCC 阳性转基因植株鉴定
Identification of the positive transgenic plant
Hyp-R TTCCGGAAGTGCTTGACATTGGGGA
OsNAC2d-RT-F GATCAGATCGTTCCCCCAGC OsNAC2d表达量分析
Relative expression analysis of OsNAC2d
OsNAC2d-RT-R TGCGACACAGACAGGTCATC

Fig. 1

Relative expression patterns of OsNAC2d gene in rice A: the differential expression level of OsNAC2d gene in the root, stem, leaf, anther, and grain of wild type ZH11; B: the temporal expression of OsNAC2d in leaves and roots of rice incubated in the nutrient solution including 15% PEG-6000, and samples were collected at 0, 0.5, 3, 6,12, and 24 hours after treatment, respectively. Different letters above the columns are significantly different at the 0.05 probability level."

Fig. 3

Sequencing detection of two target sequences of pYLCRISPR/Cas9-OsNAC2d-T12 recombinant vector"

Fig. 4

Identification of the positive transgenic plants -: the negative control is an equal volume of water instead of the template; +: the positive control is an equal volume of the positive plasmid as a template; 1-11: transgenic lines; M: 2 kb DNA ladder."

Fig. 5

Sequence alignment of OsNAC2d between the osnac2d mutants and its wild type The blue letters are the target genome sequence, the yellow highlighted letters denote PAM, dashes strikethrough indicate the deleted bases, and insertion nucleotides are shown in red lowercase letters. -: deletion; +: insertion; WT: wild type (ZH11)."

Fig. 6

Phenotype of osnac2d mutants and its wild type ZH11 incubated in the nutrient solution including 15% PEG-6000 A and D denote wild type ZH11, B and E denote osnac2d-6 mutant, C and F denote osnac2d-4-2 mutant. The control group is the seedlings incubated in the complete nutrient solution. The duration of PEG-6000 treatment is 14 days."

Fig. 7

Growth status of osnac2d and wild type ZH11 incubated in the nutrient solution including 15% PEG-6000 A: the length of root; B: the length of seedling; C: the length of whole plant. The control group is the seedlings incubated in the complete nutrient solution. The duration of PEG-6000 treatment is 14 d. Different lowercase letters above the columns are significantly different at the 0.05 probability level."

Fig. 8

Biomass of osnac2d and wild type ZH11 incubated in the nutrient solution including 15% PEG-6000 A: the root biomass; B: the above-ground biomass; C: the total biomass of whole plant. The control group is the seedlings incubated in the complete nutrient solution. The duration of PEG-6000 treatment is 14 days. Different lowercase letters above the columns are significantly different at the 0.05 probability level."

Fig. 9

Relative expression levels of OsNAC2d gene in the osnac2d-6, osnac2d-4-2, and wild type ZH11 incubated in the nutrient solution including 15% PEG-6000 The control group is the seedlings incubated in the complete nutrient solution. Different letters above the columns are significantly different at the 0.05 probability level."

Table 2

Agronomic traits of different osnac2d mutants and its corresponding wild type grown in paddy field"

株系
Line
株高
Plant height (cm)
有效穗数
Effective panicle number per plant
穗长
Length of main panicle (cm)
穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
单株产量
Grain yield per plant (g)
osnac2d-1 68.0±1.0 ab 10.0±2.0 a 23.33±2.75 a 107.25±16.82 ab 77.99±12.71 ab 22.70±1.04 ab 11.14±1.55 a
osnac2d-2-1 64.7±0.6 b 9.0±1.0 a 22.52±1.57 a 115.67±17.59 ab 72.32±13.44 ab 24.30±1.00 a 12.58±2.27 a
osnac2d-2-2 67.3±1.2 ab 10.7±1.5 a 23.43±0.98 a 120.00±19.03 ab 59.83±14.19 b 21.38±0.71 b 11.51±0.90 a
osnac2d-4-1 67.0±2.0 ab 11.3±2.1 a 22.53±0.48 a 117.00±7.81 ab 76.96±2.55 ab 21.84±0.41 ab 14.63±1.04 a
osnac2d-4-2 66.0±2.0 ab 9.3±2.1 a 22.33±0.99 a 88.02±11.79 b 80.67±0.94 ab 22.20±0.26 ab 9.26±2.32 a
osnac2d-6 67.0±1.0 ab 10.7±1.5 a 23.94±1.09 a 112.33±9.18 ab 72.46±8.94 ab 23.20±0.20 ab 12.77±1.84 a
WT(ZH11) 69.2±0.5 a 8.7±2.1 a 21.98±0.70 a 123.11±9.47 a 83.76±6.85 a 22.33±1.55 ab 9.96±3.06 a
[1] 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展. 生物技术通报, 2020, 36(12): 155-169.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0537
Zhang H M, Li Y, Liu H F, Kong L G, Ding X H. Research progress on regulatory genes of important agronomic traits and breeding utilization in rice. Biotech Bull, 2020, 36(12): 155-169. (in Chinese with English abstract)
[2] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301-1321. (in Chinese with English abstract)
[3] Bernier J, Atlin G, Serraj R, Kumar A, Spaner D. Breeding upland rice for drought resistance. J Sci Food Agric, 2008, 88: 927-939.
doi: 10.1002/jsfa.3153
[4] 王英, 张浩, 马军韬, 张丽艳, 邓凌伟, 王永力, 高晶, 张国民. 水稻抗旱研究进展与展望. 热带作物学报, 2018, 39: 1038-1043.
Wang Y, Zhang H, Ma J T, Zhang L Y, Deng L W, Wang Y L, Gao J, Zhang G M. Advances in drought tolerance of rice. Chin J Trop Crops, 2018, 39: 1038-1043. (in Chinese with English abstract)
[5] Zhang Q F. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2017, 104: 16402-16409.
doi: 10.1073/pnas.0708013104
[6] 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019, 49: 1185-1212.
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China. Sci China-Life Sci, 2019, 49: 1185-1212. (in Chinese with English abstract)
[7] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841-857.
pmid: 9212461
[8] Souer E, Houwelingen A V, Kloos D, Mol J, Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159-170.
pmid: 8612269
[9] 柳展基, 邵凤霞, 唐桂英. 植物NAC转录因子的结构功能及其表达调控研究进展. 西北植物学报, 2007, 27: 1915-1920.
Liu Z J, Shao F X, Tang G Y. The research progress of structure, function and regulation of plant NAC transcription factors. Acta Bot Boreali-Occident Sin, 2007, 27: 1915-1920. (in Chinese with English abstract)
[10] 李鹏, 黄耿青, 李学宝. 植物NAC转录因子. 植物生理学通讯, 2010, 46: 294-300.
Li P, Huang G Q, Li X B. Plant NAC transcription factors. Plant Physiol Commun, 2010, 46: 294-300. (in Chinese)
[11] Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. Genome-wide analysis of NAC transcription factor family in rice. Gene, 2010, 465: 30-44.
doi: 10.1016/j.gene.2010.06.008 pmid: 20600702
[12] Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcrition factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
doi: 10.1073/pnas.0604882103
[13] Redillas M C, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J, 2012, 10: 792-805.
doi: 10.1111/j.1467-7652.2012.00697.x pmid: 22551450
[14] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics, 2010, 284: 173-183.
doi: 10.1007/s00438-010-0557-0
[15] Jeong J S, Kim Y S, Redillas M C Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plant leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J, 2013, 11: 101-114.
doi: 10.1111/pbi.12011 pmid: 23094910
[16] Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong LZ. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot, 2015, 66: 6803-6817.
doi: 10.1093/jxb/erv386
[17] Li Z, Pan X, Guo X, Fan K, Lin W. Physiological and transcriptome analyses of early leaf senescence for ospls1 mutant rice (Oryza sativa L.) during the grain-filling stage. Int J Mol Sci, 2019, 20: 1098.
doi: 10.3390/ijms20051098
[18] 李兆伟, 零东兰, 孙聪颖, 曾慧玲, 刘凯基, 蓝颖珊, 范凯, 林文雄. 利用CRISPR/Cas9技术定向编辑水稻OsIAA11. 中国农业科学, 2021, 54: 2699-2709.
Li Z W, Ling D L, Sun C Y, Zeng H L, Liu K J, Lan Y S, Fan K, Lin W X. CRISPR/Cas9 targeted editing of OsIAA11 in rice. Sci Agric Sin, 2021, 54: 2699-2709. (in Chinese with English abstract)
[19] Ma X L, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[20] 沈少炎, 吴玉香, 郑玉善. 植物干旱胁迫响应机制研究进展——从表型到分子. 生物技术进展, 2017, 7(3): 169-176.
Shen S Y, Wu Y X, Zheng Y S. Review on drought response in plants from phenotype to molecular. Curr Biotech, 2017, 7(3): 169-176. (in Chinese with English abstract)
[21] Belhaj K, Chaparro-Garcia A, Kamoun S, Patron N J, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotech, 2015, 32: 76-84.
doi: S0958-1669(14)00194-3 pmid: 25437637
[22] Bhatta B P, Malla S. Improving horticulture crops via CRISPR/ Cas9: current successes and prospects. Plants (Basel), 2020, 9: 1360.
[23] Yimam Y T, Zhou J, Akher S A, Zheng X, Qi Y, Zhang Y. Improving a quantitative trait in rice by multigene editing with CRISPR-Cas9. Methods Mol Biol, 2021, 2238: 205-219.
doi: 10.1007/978-1-0716-1068-8_13 pmid: 33471333
[24] Rao MJ, Wang L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 2021, 254: 68.
doi: 10.1007/s00425-021-03716-y pmid: 34498163
[25] Ren C, Liu Y, Guo Y, Duan W, Fan P, Li S, Liang Z. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Hortic Res, 2021, 8: 52.
doi: 10.1038/s41438-021-00489-z
[26] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱. 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018, 44: 844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z. Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2018, 44: 844-851. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00844
[27] 季新, 李飞, 晏云, 孙红正, 张静, 李俊周, 彭廷, 杜彦修, 赵全志. 基于CRISPR/Cas9系统的水稻光敏色素互作因子OsPIL15基因编辑. 中国农业科学, 2017, 50: 2861-2871.
Ji X, Li F, Yan Y, Sun H Z, Zhang J, Li J Z, Peng T, Du Y X, Zhao Q Z. CRISPR/Cas9 system-based editing of phytochrome- interacting factor OsPIL15. Sci Agric Sin, 2017, 50: 2861-2871. (in Chinese with English abstract)
[28] 黄前量, 徐庆国, 殷绪明. 水稻NAC转录因子基因OsDSR42的克隆与功能初步分析. 分子植物育种, 2022, 20: 5229-5235.
Huang Q L, Xu Q G, Yin X M. Cloning and functional analysis of OsDSR42, a NAC transcription factor gene from rice. Mol Plant Breed, 2022, 20: 5229-5235.
[29] 王春雨, 张茜. 植物NAC转录因子功能研究进展. 生物技术通报, 2018, 34(11): 8-14.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0443
Wang C Y, Zhang Q. Research progress on plant NAC transcription factors. Biotech Bull, 2018, 34(11): 8-14. (in Chinese with English abstract)
[30] 张慧珍, 白雪芹, 曾幼玲. 植物NAC转录因子的生物学功能. 植物生理学报, 2019, 55: 915-924.
Zhang H Z, Bai X Q, Zeng Y L. Biological functions of plant NAC transcription factors. Plant Physiol J, 2019, 55: 915-924. (in Chinese with English abstract)
[31] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498.
doi: 10.1105/tpc.104.022699
[32] Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant, 2016, 158: 45-64.
doi: 10.1111/ppl.12444 pmid: 26991441
[33] Nakashima K, Tran L P, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617-630.
pmid: 17587305
[34] Hong Y, Zhang H, Huang L, Li D, Song F. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4.
[35] 罗莉琼, 吕波, 陈旭, 李捷, 明凤. OsNAC2通过ABA依赖途径负调控水稻的多种非生物胁迫反应. 复旦学报(自然科学版), 2016, 55(1): 89-96.
Luo L Q, Lyu B, Chen X, Li J, Ming F. OsNAC2 negatively regulates various abiotic stress through ABA-dependent pathway in rice. J Fudan Univ (Nat Sci Edn), 2016, 55(1): 89-96. (in Chinese with English abstract)
[36] 饶玉春, 戴志俊, 朱怡彤, 姜嘉骥. 水稻抗干旱胁迫的研究进展. 浙江师范大学学报(自然科学版), 2020, 43(4): 417-429.
Rao Y C, Dai Z J, Zhu Y T, Jiang J J. Advances in research of drought resistance in rice. J Zhejiang Norm Univ (Nat Sci Edn), 2020, 43(4): 417-429. (in Chinese with English abstract)
[37] 梅德勇, 王士梅, 朱启升, 陈秀晨, 龚存力, 韩云芳, 于智坤. 水稻抗旱性遗传生理机制及育种研究进展. 安徽农学通报, 2016, 22(22): 10-14.
Mei D Y, Wang S M, Zhu Q S, Chen X C, Gong C L, Han Y F, Yu Z K. Progress on the genetic and physiological mechanism of rice drought resistance and breeding strategies. Anhui Agric Sci Bull, 2016, 22(22): 10-14. (in Chinese with English abstract)
[38] Zhang Z, Dong J, Ji C, Wu Y, Messing J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci USA, 2019, 116: 11223-11228.
doi: 10.1073/pnas.1904995116
[39] Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J Exp Bot, 2021, 72: 2947-2964.
doi: 10.1093/jxb/erab027 pmid: 33476364
[1] LIU Li-Jun, ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang. Research progress on the formation of large panicles in rice and its regulation [J]. Acta Agronomica Sinica, 2023, 49(3): 585-596.
[2] ZHU Xiao-Tong, YE Ya-Feng, GUO Jun-Yao, YANG Hui-Jie, WANG Zi-Yao, ZHAN Yue, WU Yue-Jin, TAO Liang-Zhi, MA Bo-Jun, CHEN Xi-Feng, LIU Bin-Mei. Heredity and fine mapping of an early-senescence leaf gene ESL8 in rice [J]. Acta Agronomica Sinica, 2023, 49(3): 662-671.
[3] WU Dong-Qing, LI Zhou, GUO Chun-Lin, ZOU Jing-Nan, PANG Zi-Qin, LIN Fei-Fan, HE Hai-Bin, LIN Wen-Xiong. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time [J]. Acta Agronomica Sinica, 2023, 49(3): 755-771.
[4] FANG Ya-Ting, REN Tao, ZHANG Shun-Tao, ZHOU Xiang-Qi, ZHAO Jian, LIAO Shi–Peng, CONG Ri-Huan, LU Jian-Wei. Different effects of nitrogen, phosphorus and potassium fertilizers on oilseed rape yield and nutrient utilization between continuous upland and paddy-upland rotations#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 772-783.
[5] LI Qiu-Ping, ZHANG Chun-Long, YANG Hong, WANG Tuo, LI Juan, JIN Shou-Lin, HUANG Da-Jun, LI Dan-Dan, WEN Jian-Cheng. Physiological characteristics analysis and gene mapping of a semi-sterility plant mutant sfp10 in rice (Oryza sativa L.)#br# [J]. Acta Agronomica Sinica, 2023, 49(3): 634-646.
[6] XIANG Si-Qian, LI Ru-Xiang, XU Guang-Yi, DENG Ke-Li, YU Jin-Jin, LI Miao-Miao, YANG Zheng-Lin, LING Ying-Hua, SANG Xian-Chun, HE Guang-Hua, ZHAO Fang-Ming. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66 [J]. Acta Agronomica Sinica, 2023, 49(3): 731-743.
[7] CAI Xiao-Xi, HU Bing-Shuang, SHEN Yang, WANG Yan, CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, SUN Xiao-Li. Effects of GsERF6 overexpression on salt-alkaline tolerance in rice [J]. Acta Agronomica Sinica, 2023, 49(2): 561-569.
[8] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[9] CHEN Sai-Hua, PENG Sheng, YOU Yi-Wen, ZHANG Lu-Yao, WANG Kai, XUE Ming, YANG Yuan-Zhu, WAN Jian-Min. Genetic analysis of photosensitivity divergence among hybrids derived from rice sterile line Xiangling 628S [J]. Acta Agronomica Sinica, 2023, 49(2): 332-342.
[10] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[11] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[12] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[13] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[14] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[15] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!