Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 917-925.doi: 10.3724/SP.J.1006.2023.24064

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus

CHEN Hui(), XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin*()   

  1. National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center for Rapeseed/Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-03-22 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-12
  • Contact: *E-mail: yibin@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD01008)

Abstract:

Post-translational modifications are very important for protein function. SUMOylation is a very important post-translational modification, which has great influence on the key processes of plant growth and development. As an important oil and economic crops, there is few studies on SUMO modification in Brassica napus. To remedy this gap, SUMOylation in Brassica napus was investigated in this study. Firstly, 31 SUMO proteins were identified in Brassica napus by bioinformatics methods, which were divided into three groups (“canonical” SUMO, “non-canonical” SUMO, and SUMO-V). Secondly, the relative expression pattern indicated that, Bna.SUMO1.C08, a homologous gene of AtSUMO1, was highly expressed in roots, leaves, and silique. Subcellular localization revealed that Bna.SUMO1.C08 was localized in the nucleus and endoplasmic reticulum. Finally, Bna.SUMO1.C08 was overexpressed in Brassica napus and Bna.SUMO1.C08 could enhance plant resistance to PEG stress. This study laid a foundation for the subsequent research on SUMO modification in Brassica napus.

Key words: Brassica napus, SUMOylation, Bna.SUMO1.C08

Table S1

Basic information of SUMO protein family members in Brassica napus"

基因名
Gene name
序列号
Sequence number
基因长度
Gene length (bp)
蛋白长度
Protein length (aa)
分子量
Molecular weight (Da)
等电点
Isoelectric point
Bna.SUMO1.C08 BnaC08T0170600ZS 304 101 11,083.39 4.91
Bna.SUMO1.A08 BnaA08T0169400ZS 304 101 11,124.43 4.91
Bna.SUMO1.C01 BnaC01T0209100ZS 316 105 11,589.98 4.93
Bna.SUMO1.A03 BnaA03T0494800ZS 304 101 11,123.50 4.91
Bna.SUMO1.A01 BnaA01T0162300ZS 303 100 11,120.40 4.93
Bna.SUMO1.C07 BnaC07T0472900ZS 295 98 10,889.23 4.91
Bna.SUMO1.A05 BnaA05T0335100ZS 259 86 10,309.86 10.61
Bna.SUMO1.C04 BnaC04T0237000ZS 256 85 9964.39 9.18
Bna.SUMO1.C06 BnaC06T0107300ZS 211 70 8117.07 9.25
Bna.SUMO1.C03 BnaC03T0634700ZS 211 70 8158.22 9.73
Bna.SUMO2.C09 BnaC09T0378000ZS 313 104 11,668.17 4.93
Bna.SUMO2.A10 BnaA10T0112600ZS 313 104 11,716.22 4.93
Bna.SUMO2.A02 BnaA02T0129200ZS 295 98 11,017.38 4.93
Bna.SUMO2.C02 BnaC02T0161400ZS 481 160 18,387.54 5.26
Bna.SUMO3.C03 BnaC03T0307000ZS 328 109 12,774.63 8.69
Bna.SUMO4.C07 BnaC07T0331100ZS 1213 404 46,871.13 9.15
Bna.SUMO4.A09 BnaA09T0050000ZS 244 81 9306.37 5.26
Bna.SUMO5.A04 BnaA04T0211000ZS 304 101 11,358.08 9.55
Bna.SUMO5.C03 BnaC03T0183400ZS 364 121 13,485.51 9.57
Bna.SUMO5.C04b BnaC04T0521300ZS 304 101 11,358.08 9.55
Bna.SUMO5.A05 BnaA05T0114400ZS 307 102 11,257.98 9.33
Bna.SUMO5.A03 BnaA03T0157500ZS 166 55 6198.18 9.52
Bna.SUMO5.A06 BnaA06T0124100ZS 325 108 12,451.37 8.66
Bna.SUMO5.C04c BnaC04T0143500ZS 295 98 10,885.65 9.61
Bna.SUMO5.C05 BnaC05T0152200ZS 313 104 11,998.78 8.69
Bna.SUMO5.C08 BnaC08T0244100ZS 292 97 11,140.70 5.04
Bna.SUMO5.C04a BnaC04T0143300ZS 307 102 11,279.03 9.73
Bna.SUMO6.A06 BnaA06T0362200ZS 1192 397 45,931.67 6.45
Bna.SUMO6.C09 BnaC09T0036100ZS 271 90 10,505.94 5.12
Bna.SUM-V.C06 BnaC06T0314000ZS 1042 347 38,854.96 5.23
Bna.SUM-V.A07 BnaA07T0276200ZS 724 241 27,254.87 5.32

Fig. 1

Sequence analysis of SUMO protein members in Brassica napus A: phylogenetic tree analysis. Group 1 in red is a “canonica” group. Group 2 in blue is a “non-canonica” group. Group 3 in purple is a sumo-related protein. B: the analyses of motif, domain, and gene structure. The first column is Motif; the second column is Domain; the third section is genetic structure. C: protein sequence alignment. The red cuboid is labeled as β-grasp domain range; dots are action sites."

Fig. 2

Chromosomal localization and collinearity analysis of SUMO protein gene in Brassica napus A: the chromosome location visualization of SUMO protein genes. B: the intra-species and interspecies collinearity analysis of Arabidopsis thaliana, Brassica oleracea, Brassica rapa, and Brassica napus."

Fig. 3

Relative expression pattern and subcellular localization of Bna.SUMO1.C08 genes A: the relative expression pattern. Bna.SUMO1.C08 is mainly expressed in roots, leaves, and scones. B: the subcellular localization. Bna.SUMO1.C08 locates in the nucleus and endoplasmic reticulum. Bar: 1 μm."

Fig. 4

Identification of Bna.SUMO1.C08 over expression transgenic lines at mRNA level A: the vector structure diagram of Bna.SUMO1.C08 overexpressed genes. B: the relative expression levels of Bna.SUMO1.C08 in overexpressed plants."

Fig. 5

Phenotypes of Bna.SUMO1.C08 over expression transgenic lines and wide type lines under PEG treatment A, B: the phenotype and statistics of root length. C, D: DAB staining and NBT staining. E, F: the enzyme activity detection of POD and SOD. *: P < 0.05; **: P < 0.01; ***: P < 0.001."

[1] Vierstra R D. The expanding universe of ubiquitin and ubiquitin-like uodifiers. Plant Physiol, 2012, 160: 2-14.
doi: 10.1104/pp.112.200667 pmid: 22693286
[2] Augustine R C, York S L, Rytz T C, Vierstra R D. Defining the SUMO system in maize: SUMOylation is up-regulated during endosperm development and rapidly induced by stress. Plant Physiol, 2016, 171: 2191-2210.
doi: 10.1104/pp.16.00353 pmid: 27208252
[3] Augustine R C, Vierstra R D. SUMOylation: re-wiring the plant nucleus during stress and development. Curr Opin Plant Biol, 2018, 45: 143-154.
doi: S1369-5266(17)30239-X pmid: 30014889
[4] Saracco S A, Miller M J, Kurepa J, Vierstra R D. Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol, 2007, 145: 119-134.
pmid: 17644626
[5] Miura K, Lee J, Miura T, Hasegawa P M. SIZ1 controls cell growth and plant development in Arabidopsis through salicylic acid. Plant Cell Physiol, 2010, 51: 103-113.
doi: 10.1093/pcp/pcp171
[6] Miura K, Lee J, Gong Q, Ma S, Jin J B, Yoo C Y, Miura T, Sato A, Bohnert H J, Hasegawa P M. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol, 2011, 155: 1000-1012.
doi: 10.1104/pp.110.165191 pmid: 21156857
[7] Son G H, Park B S, Song J T, Seo H S. FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot, 2014, 65: 339-351.
doi: 10.1093/jxb/ert383 pmid: 24218331
[8] Li X, Zhou S, Liu Z, Lu L, Dang H, Li H, Chu B, Chen P, Ma Z, Zhao S, Li Z, Nocker S, Ma F, Guan Q. Fine-tuning of SUMOylation modulates drought tolerance of apple. Plant Biotechnol J, 2022, 20: 903-919.
doi: 10.1111/pbi.13772 pmid: 34978131
[9] Wang F, Liu Y, Shi Y, Han D, Wu Y, Ye W, Yang H, Li G, Cui F, Wan S, Lai J, Yang C. SUMOylation stabilizes the transcription factor DREB2A to improve plant thermotolerance. Plant Physiol, 2020, 183: 41-50.
doi: 10.1104/pp.20.00080 pmid: 32205452
[10] Fang Q, Zhang J, Zhang Y, Fan N, van den Burg H A, Huang C. Regulation of aluminum resistance in Arabidopsis involves the SUMOylation of the zinc finger transcription factor STOP1. Plant Cell, 2020, 32: 3921-3938.
doi: 10.1105/tpc.20.00687
[11] Verma V, Srivastava A K, Gough C, Campanaro A, Srivastava M, Morrell R, Joyce J, Bailey M, Zhang C, Krysan P J, Sadanandom A. SUMO enables substrate selectivity by mitogen-activated protein kinases to regulate immunity in plants. Proc Natl Acad Sci USA, 2021, 118: e2021351118.
doi: 10.1073/pnas.2021351118
[12] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[13] Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: 327-331.
pmid: 15215404
[14] Gasteiger E. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res, 2003, 31: 3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418
[15] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W587.
doi: 10.1093/nar/gkm259 pmid: 17517783
[16] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[17] Zhang H, Gao S, Lercher M J, Hu S, Chen W. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res, 2012, 40: W569-W572.
doi: 10.1093/nar/gks576
[18] Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[19] Yu J, Tehrim S, Zhang F, Tong C, Huang J, Cheng X, Dong C, Zhou Y, Qin R, Hua W, Liu S. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics, 2014, 15: 3.
doi: 10.1186/1471-2164-15-3
[20] Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, Liu D, Wang X, Li P, Liu Y, Lin K, Bucher J, Zhang N, Wang Y, Wang H, Deng J, Liao Y, Wei K, Zhang X, Fu L, Hu Y, Liu J, Cai C, Zhang S, Zhang S, Li F, Zhang H, Zhang J, Guo N, Liu Z, Liu J, Sun C, Ma Y, Zhang H, Cui Y, Freeling M R, Borm T, Bonnema G, Wu J, Wang X. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat Genet, 2016, 48: 1218-1224.
doi: 10.1038/ng.3634 pmid: 27526322
[21] Kurepa J, Walker J M, Smalle J, Gosink M M, Davis S J, Durham T L, Sung D, Vierstra R D. The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. J Biol Chem, 2003, 278: 6862-6872.
doi: 10.1074/jbc.M209694200
[22] Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and regulation of soybean SUMOylation system under abiotic stress conditions. Front Plant Sci, 2017, 8: 1458.
doi: 10.3389/fpls.2017.01458 pmid: 28878795
[23] Foyer C H, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 2009, 11: 861-905.
doi: 10.1089/ars.2008.2177
[24] Sun X, Wang P, Jia X, Huo L, Che R, Ma F. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J, 2018, 16: 545-557.
doi: 10.1111/pbi.12794
[25] Nadarajah K K. ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci, 2020, 21: 5208.
doi: 10.3390/ijms21155208
[26] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1092.
doi: 10.3389/fpls.2015.01092 pmid: 26697045
[1] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[2] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[3] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[4] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[5] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[6] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[7] LI Sheng-Ting, XU Yuan-Fang, CHANG Wei, LIU Ya-Jun, GU Yuan, ZHU Hong, LI Jia-Na, LU Kun. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway [J]. Acta Agronomica Sinica, 2022, 48(8): 1938-1947.
[8] ZHANG Tian-Yu, WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng. Bioinformatics analysis and core member identification of proline metabolism gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(8): 1977-1995.
[9] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[10] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[11] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[12] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[13] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[14] YANG Wen-Jing, LU Hai-Qin, CHEN Wu-Jun, ZENG Lei, XIE Tao, JIANG Jin-Jin, WANG You-Ping. Functional identification of Bna-miR171g on improving tolerance to osmotic stress in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(12): 3071-3079.
[15] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .