Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (4): 996-1005.doi: 10.3724/SP.J.1006.2023.24062

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum)

ZHANG Wei-Na(), YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao*()   

  1. College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-03-21 Accepted:2022-07-21 Online:2023-04-12 Published:2022-08-22
  • Contact: *E-mail: qinsh@gsau.edu.cn
  • Supported by:
    Science and Technology Innovation Fund of Gansu Agricultural University (Doctoral Research Start-up Fund Project for Public Recruitment)(GAU-KYQD-2020-10);Natural Science Foundation of Gansu Province(21JR7RA827);National Natural Science Foundation of China(32060441)

Abstract:

Potato late blight is a devastating oomycete disease, which causes great economic losses to agricultural production. In this study, we analyzed the role and potential regulatory mechanism of StEFR1 in regulating late blight resistance by the relative expression pattern and functional verification combined with the bioinformatics methods. Evolutionary analysis showed that the sequence similarity between StEFR1 and AtEFR was 53.9%. After inoculated with Phytophthora infestans for 3 days and treatment with elf18 for 3 hours, the relative expression level of StEFR1 in isolated leaves of Atlantic was upregulated to 1.87 times and 2.31 times compared with the control, respectively. The late blight resistance significantly increased after the overexpression of StEFR1 in the isolated leaves of Atlantic by agrobacterium infiltration method. Compared with the control, the area of leaf lesion size decreased and the activity of leaf cells increased. And the marker genes of PTI, SA, and JA signaling pathways in overexpressed leaves were significantly up-regulated to varied degrees, while the relative expression levels of ET related-genes did not change significantly. In conclusion, StEFR1 was involved in the PTI resistance and regulated the relative expression levels of SA and JA hormone signaling related genes, suggesting that StEFR1 positively regulated the potato late blight. This study lays a foundation for further revealing the molecular mechanism of StEFR1 in regulating the immune response and provides important reference for the molecular breeding of late blight.

Key words: potato late blight, LRR-RLKs, hormonal signal, marker gene, differential expression

Table 1

Primers for quantitative real-time PCR"

基因名称
Gene name
上游引物
Forward sequence (5′-3′)
下游引物
Reverse sequence (5′-3′)
ef1α ATTGGAAACGGATATGCTCCA TCCTTACCTGAACGCCTGTCA
ChtA TTCTGGATGACAGCACAGGATAA GGCGTCCATTGCCCAAT
PR-1b GGCATCCCGAGCACAAAAT CTGCACCGGAATGAATCAAGT
PR-2 GTGAAGCTGGTTTGGGAAATG TTGCCAATCAACGTCATGTCTAC
WRKY7 CCAACTGGAAGCAACAACAA CCTGATTAGAATGATTAGCCAACA
WRKY8 CCTACTGTGACATCTCATCAATCC GGGTGCTCCCATTTCAGAC
ACRE31 CAGGATGAATCGGATCTGAAA CGGCAATCCCAATTTCTCTA
LOX CAGATCAGGCCCCGTTAATG CCTGTAAGTCCACCTTCACTTGTTG
PAL-2 GGTCACTGCCTCGGGTGAT CCTGCCAGTGAGCAAACCA
ERF3 GTGTTGACGTGAAACCAACCAT CCGGTGGAGGAAAGTTAAGGT

Fig. 1

Domain identification, evolutionary analysis, and sequence alignment of StEFR1 A: StEFR1 is identified as a typical member of LRR-RLK family; B: StEFR1 is closely related to AT5G20480 (AtEFR) in Arabidopsis thaliana, which had known functions; C: the similarity between StEFR1 and AtEFR is 53.9%."

Fig. 2

Relative expression pattern of StEFR1 genes in response to pathogen signal * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Table 2

Putative regulatory cis-elements in StEFR1 promoters"

序号
Serial number
顺式调控元件
Cis-elements
数目
Number
1 防御和应激反应元件Defense and stress responsive elements 2
2 脱落酸响应元件Abscisic acid responsive elements 2
3 厌氧诱导相关元件Anaerobic responsive elements 7
4 干旱诱导元件Drought responsive elements 5
5 玉米醇溶蛋白代谢调节元件Regulatory element for zein metabolism 1
6 光照响应元件Light responsive elements 10

Fig. 3

Transient overexpression of StEFR1 leaves enhanced late blight resistance A: the relative expression level of StEFR1 reached the maximum when injected for 2 days; B: the symptoms of WT leaves were more serious on the 4th day; C: the disease spot area in WT and OE; D: a large number of cells in WT group died. WT: the group injected with empty vector pFGC5941; OE: the group injected with StEFR1-PFGC5941. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 4

Relative expression pattern of PTI marker genes (WRKY7, WRKY8, and ACRE31) in WT and OE after inoculation with P. infestans for different times WT: the group injected with empty vector pFGC5941; OE: the group injected with StEFR1-PFGC5941. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

Fig. 5

Relative expression pattern of SA (ChtA, PR-1B, and PR-2), JA (LOX and PAL-2) and ET (ERF3) related genes in WT and OE after inoculation with P. infestans for different times WT: the group injected with empty vector pFGC5941; OE: the group injected with StEFR1-PFGC5941. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively."

[1] Lal M, Arora R K, Maheshwari U, Rawal S, Yadav S. Impact of late blight occurrence on potato productivity during 2013-14. Int J Agric Statist Sci, 2016, 12: 187-192.
[2] Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes G A, Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 2014, 104: 624-633.
doi: 10.1094/PHYTO-10-13-0270-R pmid: 24423400
[3] Haverkort A J, Boonekamp P M, Hutten R, Jacobsen E, Lotz L A P, Kessel G J T, Visser R G F, Vossen E A G. Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res, 2008, 51: 47-57.
doi: 10.1007/s11540-008-9089-y
[4] 徐进, 朱杰华, 杨艳丽, 汤浩, 吕和平, 樊明寿, 石瑛, 董道峰, 王贵江, 王万兴, 熊兴耀, 高玉林. 中国马铃薯病虫害发生情况与农药使用现状. 中国农业科学, 2019, 52: 2800-2808.
Xu J, Zhu J H, Yang Y L, Tang H, Lyu H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, Xiong X Y, Gao Y L. Status of major diseases and insect pests of potato and pesticide usage in China. Sci Agric Sin, 2019, 52: 2800-2808. (in Chinese with English abstract).
[5] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286
[6] Park T H, Vleeshouwers V G A A, Jacobsen E, Van Der Vossen E, Visser R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breed, 2009, 128: 109-117.
doi: 10.1111/j.1439-0523.2008.01619.x
[7] Bradshaw J E, Bryan G J, Lees A K, McLean K, Solomon-Blackburn R M. Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of black. Theor Appl Genet, 2006, 112: 744-751.
doi: 10.1007/s00122-005-0179-9 pmid: 16395567
[8] Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol, 2013, 14: 740-757.
doi: 10.1111/mpp.12036 pmid: 23710878
[9] Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol Plant, 2015, 8: 521-539.
doi: 10.1016/j.molp.2014.12.022 pmid: 25744358
[10] Couto D, Zipfel C. Regulation of pattern recognition receptor signaling in plants. Nat Rev Immunol, 2016, 16: 537-552.
doi: 10.1038/nri.2016.77
[11] Zipfel C, Robatzek S. Pathogen-associated molecular pattern- triggered immunity: veni, vidi...? Plant Physiol, 2010, 154: 551-554.
doi: 10.1104/pp.110.161547 pmid: 20921183
[12] Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol, 2020, 71: 131-156.
doi: 10.1146/annurev-arplant-073019-025927 pmid: 32186895
[13] Angela C G, Wilkinson R C, Selena G I, Kim F, Coffey M D, Cyril Z, Rathjen J P, Sophien K, Sebastian S, Yang C H. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS One, 2011, 6: e16608.
doi: 10.1371/journal.pone.0016608
[14] Montesano M, Kõiv V, Mäe A, Palva E T. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato. Mol Plant Pathol, 2010, 2: 339-346.
doi: 10.1046/j.1464-6722.2001.00083.x
[15] Wu T, Tian Z D, Liu J, Xie C H. A novel leucine-rich repeat receptor-like kinase gene in potato, StLRPK1, is involved in response to diverse stresses. Mol Biol Rep, 2009, 36: 2365-2374.
doi: 10.1007/s11033-009-9459-9 pmid: 19214776
[16] Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR- LIKE KINASE5 (LYK5). New Phytol, 2017, 215: 382-396.
doi: 10.1111/nph.14592 pmid: 28513921
[17] Lee W S, Rudd J J, Hammond-Kosack K E, Kanyuka K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Interact, 2014, 27: 236-243.
doi: 10.1094/MPMI-07-13-0201-R
[18] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nuernberger T, Jones J D G, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497-500.
doi: 10.1038/nature05999
[19] Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60: 379-406.
doi: 10.1146/annurev.arplant.57.032905.105346 pmid: 19400727
[20] Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse H P, Smoker M, Rallapalli G, Thomma B P H J, Staskawicz B. Interfamily transfer of a plant pattern-recognition receptor confers broad spectrum bacterial resistance. Nat Biotechnol, 2010, 28: 365-369.
doi: 10.1038/nbt.1613
[21] Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas P E, Daudi A, Petzold C J, Singan V R, Kuo R. Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses. PLoS Pathog, 2015, 11: e1004809.
doi: 10.1371/journal.ppat.1004809
[22] Turnbull D, Yang L, Naqvi S, Breen S, Welsh L, Stephens J, Morris J, Boevink P C, Hedley P E, Zhan J l, Birch Paul R J, Gilroy E. RXLR effector AVR2 up-regulates a brassinosteroid responsive bHLH transcription factor to suppress immunity. Plant Physiol, 2017, 174: 356-369.
doi: 10.1104/pp.16.01804 pmid: 28270626
[23] He Q, McLellan H, Boevink P C, Sadanandom A, Xie C, Birch P R J, Tian Z. U-box E3 ubiquitin ligase PUB17 acts in the nucleus to promote specific immune pathways triggered by Phytophthora infestans. J Exp Bot, 2015, 66: 3189-3199.
doi: 10.1093/jxb/erv128
[24] Arseneault T, Pieterse C, Gérin-Ouellet M, Goyer C, Filion M. Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology, 2014, 104: 926-932.
doi: 10.1094/PHYTO-11-13-0321-R pmid: 24601985
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Zhang L, Zhang F, Melotto M, Yao J, He S Y. Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot, 2017, 68: 1371-1385.
doi: 10.1093/jxb/erw478 pmid: 28069779
[27] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760.
doi: 10.1016/j.cell.2006.03.037 pmid: 16713565
[28] Lloyd S R, Schoonbeek H-J, Trick M, Zipfel C, Ridout C J. Methods to study PAMP-triggered immunity in Brassica species. Mol Plant Microbe Interact, 2014, 27: 286-295.
doi: 10.1094/MPMI-05-13-0154-FI
[29] 路粉. 水稻中表达拟南芥AtEFR及水稻内源受体对细菌延伸因子EF-Tu识别的研究. 中国农业大学博士学位论文, 北京, 2015.
Lu F. Studies on Recognition of Bacterial Elongation Factor EF-Tu by Arabidopsis AtEFR and Endogenous Receptor in Oryza sativa. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract)
[30] Schoonbeek H, Wang H H, Stefanato F L, Craze M, Bowden S, Wallington E, Zipfel C, Ridout C J. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol, 2015, 206: 606-613.
doi: 10.1111/nph.13356 pmid: 25760815
[31] Macho A P, Zipfel C. Plant PRRs and the activation of innate immune signaling. Mol Cell, 2014, 54: 263-372.
doi: 10.1016/j.molcel.2014.03.028 pmid: 24766890
[32] Greeff C, Roux M, Mundy J, Petersen M. Receptor-like kinase complexes in plant innate immunity. Front Plant Sci, 2012, 3: 209.
doi: 10.3389/fpls.2012.00209 pmid: 22936944
[33] Liu P L, Du L, Huang Y, Gao S M, Yu M. Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evol Biol, 2017, 17: 47.
doi: 10.1186/s12862-017-0891-5
[34] McLellan H, Boevink P C, Armstrong M R, Pritchard L, Gomez S, Morales J, Whisson S C, Beynon J L, Birch P R J. An RxLR effector from Phytophthora infestans prevents relocalisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog, 2013, 9: e1003670.
doi: 10.1371/journal.ppat.1003670
[35] 王海霞. 类受体激酶StLRPK1、StSERK3A/BAK和磷酸酶StBSLs在马铃薯晚疫病抗性免疫应答中的作用. 华中农业大学博士学位论文, 湖北武汉, 2018.
Wang H X. Investigation of Receptor Kinase StLRPK1, StSERK3A/BAK1 and Phosphotase StBSLs Functions in Potato Immunity Against Late Blight. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[36] 郑佳仪. 马铃薯高抗晚疫病资源筛选与抗病相关基因挖掘. 中国农业科学院硕士学位论文, 北京, 2020.
Zheng J Y. Identification of High Resistance Potato Resource to Late Blight and Mining of Resistance Related Genes. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract)
[1] LI Fu, WANG Yan-Zhou, YAN Li, ZHU Si-Yuan, LIU Tou-Ming. Characterization of the expression profiling of circRNAs in the barks of stems in ramie [J]. Acta Agronomica Sinica, 2021, 47(6): 1020-1030.
[2] Ping LI,Wan-Wei HOU,Yu-Jiao LIU. Proteomic analysis of drought stress response on drought resistance for Vicia faba L. variety ‘Qinghai 13’ in Qinghai Plateau of China [J]. Acta Agronomica Sinica, 2019, 45(2): 267-275.
[3] DO Thanh-Trung, LI Jian, ZHANG Feng-Juan, YANG Li-Tao, LI Yang-Rui,XING Yong-Xiu. Analysis of Differential Proteome in Relation to Drought Resistance in Sugarcane [J]. Acta Agron Sin, 2017, 43(09): 1337-1346.
[4] TAN He-Lin,XU Xin-Ying,FU Li-Man,XIANG Xiao-E,LI Jian-Qiao,GUO Hao-Lun,YE Wen-Xue. Cloningand Expression Pattern of DNA Methylase I (MET1) from Brassica napus L. and Its Progenitors [J]. Acta Agron Sin, 2015, 41(03): 405-413.
[5] MA Tian-Tian,PENG Qi,CHEN Song,ZHANG Jie-Fu. Differential Expression of Defense Related Genes in Brassica napus Infected by Sclerotinia sclerotiorum [J]. Acta Agron Sin, 2014, 40(03): 416-423.
[6] XIA Jia-Ping,GUO Hui-Jun,XIE Yong-Dun,ZHAO Lin-Shu,GU Jia-Yu,ZHAO Shi-Rong,LI Jun-Hui,LIU Lu-Xiang. Differential Expression of Chloroplast Genes in Chlorophyll-Deficient Wheat Mutant Mt135 Derived from Space Mutagenesis [J]. Acta Agron Sin, 2012, 38(11): 2122-2130.
[7] ZHENG Wei-Jun,XU Zhao-Shi,FENG Zhi-Juan,LI Lian-Cheng,CHEN Ming,CHAI Shou-Cheng,MA You-Zhi. Genome-Wide Identification, Classification, and Expression of NF-YB Gene Family in Soybean [J]. Acta Agron Sin, 2012, 38(09): 1570-1582.
[8] DING Guang-Zhou, HOU Jing, CHEN Li, MA Feng-Ming, CHEN Lian-Jiang. Cloning of nia Gene and Its Differential Expression Induced by Different Nitrogen Forms in Sugar Beet (Beta vulgaris L.) [J]. Acta Agron Sin, 2011, 37(11): 1949-1955.
[9] LI Li, WANG Shu-Peng, ZHANG Gai-Sheng, WANG Liang-Ming, SONG Yu-Long, ZHANG Long-Yu, NIU Na, MA Shou-Cai. Comparison of Floret Intact Chloroplast Proteome in Male Sterile Line induced by CHA-SQ-1, Cytoplasmic-Nuclear Sterile and Its Normal Fertile Lines in Wheat [J]. Acta Agron Sin, 2011, 37(07): 1134-1143.
[10] WU Jian-Ming, LI Yang-Rui, WANG Ai-Qin, YANG Liu, YANG Li-Tao. Differential Expression of Genes in Gibberellin-Induced stalk elongation of Sugarcane Analyzed with cDNA-ScoT [J]. Acta Agron Sin, 2010, 36(11): 1883-1890.
[11] ZHU Xin-Xia,ZHU Yi-Chao,AI Ni-Jiang,LIU Ren-Zhong,ZHANG Tian-Zhen. Gene Differential Expression at Seedling Stage in Four Cotton Combination Hybridized by CRI-12 and Its Pedigree-Deerived Lines [J]. Acta Agron Sin, 2009, 35(9): 1637-1645.
[12] LI Yong-Chun;MENG Fan-Rong;WANG Xiao;CHEN Lei;REN Jiang-Ping;NIU Hong-Bin;LI Lei;YIN Jun. Gene Expression Profiling in Roots of Wheat Cultivar “Luohan 2” under Water Stress [J]. Acta Agron Sin, 2008, 34(12): 2126-2133.
[13] WEI Wen-Liang; WANG Han-Zhong; LIU Gui-Hua. Differential Expression Analysis of Genes at the Stage before Anther Abortion of NCa CMS System in Brassica napus L. [J]. Acta Agron Sin, 2007, 33(10): 1654-1661.
[14] XING Chao-Zhu ;YU Shu-Xun ;; ZHAO Yun-Lei ; GUO Li-Ping ;ZHANG Xian-Long ; MIAO Cheng-Duo ; WANG Hai-Lin. Primary Study on Gene Differential Expression of Pest-resistant Cotton Hybrids between Different Heterosis Crosses [J]. Acta Agron Sin, 2007, 33(03): 507-510.
[15] BAI Yun-Feng; ZHAO Jin-Feng; ZHENG Jun; ZHANG Jin-Peng; WANG Mao-Yan; GOU Ming-Yue; DONG Zhi-Gang; YANG Hong-Chun and WANG Guo-Ying. SCMV-resistant Transgenic Maize Mediated by Antisense cp Gene [J]. Acta Agron Sin, 2006, 32(05): 661-665.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .