Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1562-1572.doi: 10.3724/SP.J.1006.2023.23042
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MA Juan*(), ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun
[1] | 张人予. 玉米穗长基因EL3的克隆及我国优良自交系基因组变异分析. 中国农业大学博士学位论文, 北京, 2018. |
Zhang R Y. Cloning of EL3 for Ear Length in Maize and Patterns of Genomic Variation in Chinese Maize Inbred Lines. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract) | |
[2] |
Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988-998.
doi: 10.1038/s41467-020-14746-7 |
[3] | 周广飞. 一个控制玉米行粒数、穗长其一般配合力的多效性QTL (qKNR7.2)鉴定. 华中农业大学硕士学位论文, 湖北武汉, 2014. |
Zhou G F. Identification of A Pleitropic QTL (qKNR7.2) for Kernel Row Number Per Row, Ear Length, and General Combining Ability of Maize. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract) | |
[4] |
Liu X G, Hu X X, Li K, Liu Z F, Wu Y J, Feng G, Huang C L, Wang H W. Identifying quantitative trait loci for the general combining ability of yield-relevant traits in maize. Breed Sci, 2021, 71: 217-228.
doi: 10.1270/jsbbs.20008 |
[5] | 监立强. 玉米产量相关性状及其一般配合力的关联分析. 河北农业大学硕士学位论文, 河北保定, 2017. |
Jian L Q. Genome-Wide Association Study of Yield-Related Traits and General Combining Ability in Maize (Zea mays L.). MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2017. (in Chinese with English abstract) | |
[6] | 刘文童, 监立强, 郭晋杰, 赵永锋, 黄亚群, 陈景堂, 祝丽英. 玉米穗部性状及其一般配合力的关联分析. 植物遗传资源学报, 2020, 21: 706-715. |
Liu W T, Jian L Q, Guo J J, Zhao Y F, Huang Y Q, Chen J C, Zhu L Y. Association analysis of ear-related traits and their general combining ability in maize. J Plant Genetic Resour, 2020, 21: 706-715. (in Chinese with English abstract) | |
[7] | 温阳俊, 冯建英, 张瑾. 多位点关联分析方法学的研究进展. 南京农业大学学报, 2022, 45: 1-10. |
Wen Y J, Feng J, Zhang J. Research progress of mulit-locus genome-wide association study. J Nanjing Agric Univ, 2022, 45: 1-10. (in Chinese with English abstract) | |
[8] | Liu X L, Huang M, Fan B, Buckler E S, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome wide association studies. PLoS Genet, 2016, 12: e1005767. |
[9] | Huang M, Liu X, Zhou Y, Summers R M, Zhang Z W. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience, 2019, 8: 1-12. |
[10] |
Wang S B, Feng J Y, Ren W L, Huang B, Zhou L, Wen Y J, Zhang J, Dunwell J M, Xu S, Zhang Y M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep, 2016, 6: 19444-19453.
doi: 10.1038/srep19444 |
[11] | Tamba C L, Zhang Y M. A fast mrMLM algorithm for multi-locus genome-wide association studies. BioRxiv, 2018. https://doi.org/10.1101/341784. |
[12] |
Wen Y J, Zhang H, Ni Y L, Huang B, Zhang J, Feng J Y, Wang S B, Dunwell J M, Zhang Y M, Wu R. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform, 2018, 19: 700-712.
doi: 10.1093/bib/bbw145 |
[13] |
Zhang J, Feng J Y, Ni Y L, Wen Y J, Niu Y, Tamba C L, Yue C, Song Q, Zhang Y M. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity, 2017, 118: 517-524.
doi: 10.1038/hdy.2017.8 pmid: 28295030 |
[14] | Tamba C L, Ni Y L, Zhang Y M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol, 2017, 13: e1005357. |
[15] |
Yang Y, Chai Y M, Zhang X, Lu S, Zhao Z C, Wei D, Chen L, Hu Y G. Multi-locus GWAS of quality traits in bread wheat: mining more candidate genes and possible regulatory network. Front Plant Sci, 2020, 11: 1091-1109.
doi: 10.3389/fpls.2020.01091 pmid: 32849679 |
[16] |
Peng Y C, Liu H B, Chen J, Shi T T, Zhang C, Sun D F, He Z H, Hao Y F, Chen W. Genome-wide association studies of free amino acid levels by six multi-locus models in bread wheat. Front Plant Sci, 2018, 9: 1196-1204.
doi: 10.3389/fpls.2018.01196 pmid: 30154817 |
[17] |
Su J J, Wang C X, Hao F S, Ma Q, Wang J, Li J L, Ning X Z. Genetic detection of lint percentage applying single-locus and multi-locus genome-wide association studies in Chinese early-maturity upland cotton. Front Plant Sci, 2019, 10: 964-974.
doi: 10.3389/fpls.2019.00964 pmid: 31428110 |
[18] |
Cui Y R, Zhang F, Zhou Y L. The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Front Plant Sci, 2018, 9: 1464-1472.
doi: 10.3389/fpls.2018.01464 pmid: 30337936 |
[19] |
Zhou G F, Zhu Q L, Mao Y X, Chen G Q, Xue L, Lu H H, Shi M L, Zhang Z L, Song X D, Zhang H M, Hao D R. Multi-locus genome-wide association study and genomic selection of kernel moisture content at the harvest stage in maize. Front Plant Sci, 2021, 12: 697688-697700.
doi: 10.3389/fpls.2021.697688 |
[20] |
Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829.
doi: 10.1093/genetics/157.4.1819 pmid: 11290733 |
[21] |
Vanraden P M. Efficient methods to compute genomic predictions. J Dairy Sci, 2008, 91: 4414-4423.
doi: 10.3168/jds.2007-0980 pmid: 18946147 |
[22] |
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes J M. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics, 2009, 182: 375-385.
doi: 10.1534/genetics.109.101501 pmid: 19293140 |
[23] |
González-Recio O, Forni S. Genome-wide prediction of discrete traits using bayesian regressions and machine learning. Genet Sel Evol, 2011, 43: 7-18.
doi: 10.1186/1297-9686-43-7 pmid: 21329522 |
[24] |
Guo Z G, Tucker D M, Lu J, Kishore V, Gay G. Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet, 2012, 124: 261-275.
doi: 10.1007/s00122-011-1702-9 pmid: 21938474 |
[25] |
Lian L, Jacobson A, Zhong S Q. Genome wide prediction accuracy within 969 maize biparental populations. Crop Sci, 2014, 54: 1514-1522.
doi: 10.2135/cropsci2013.12.0856 |
[26] |
Technow F, Schrag T A, Schipprack W, Bauer E, Simianer H, Melchinger A E. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics, 2014, 197: 1343-1355.
doi: 10.1534/genetics.114.165860 pmid: 24850820 |
[27] |
de Oliveira A A, Resende M F R Jr, Ferrão L F V, Amadeu R R, Guimarães L J M, Guimarães C T, Pastina M M, Margarido G R A. Genomic prediction applied to multiple traits and environments in second season maize hybrids. Heredity, 2020, 125: 60-72.
doi: 10.1038/s41437-020-0321-0 pmid: 32472060 |
[28] |
Wang X, Zhang Z L, Xu Y, Li P P, Xu C W. Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. Crop J, 2020, 8: 819-829.
doi: 10.1016/j.cj.2020.04.012 |
[29] |
Zhang A, Pérez-Rodríguez P, Vicente F S, Palacios-Rojas N, Dhliwayo T, Liu Y B, Cui Z H, Guan Y, Wang H, Zheng H J, Olsen M, Prasanna B M, Ruan Y Y, Crossa J, Zhang X C. Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. Crop J, 2021, 10: 109-116.
doi: 10.1016/j.cj.2021.04.007 |
[30] | 熊雪航, 段海洋, 李文龙, 李建新, 孙莉, 孙岩, 秦永田, 汤继华, 张雪海. 玉米穗长全基因组关联分析. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220630.1359.004.html |
Xiong X H, Duan H Y, Li W L, Li J X, Sun L, Sun Y, Qin Y T, Tang J H, Zhang X H. Genome-wide association study of ear length in maize. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220630.1359.004.html. (in Chinese with English abstract) | |
[31] |
秦文萱, 鲍建喜, 王彦博, 马雅杰, 龙艳, 李金萍, 董振营, 万向元. 玉米叶夹角性状的全基因组关联分析与关键位点优异等位变异挖掘. 作物学报, 2022, 48: 2691-2705.
doi: 10.3724/SP.J.1006.2022.23019 |
Qin W X, Bao J X, Wang Y B, Ma Y J, Long Y, Li J P, Dong Z Y, Wang X Y. Genome-wide association study of leaf angle traits and mining of elite alleles from the major loci in maize. Acta Agron Sin, 2022, 48: 2691-2705 (in Chinese with English abstract). | |
[32] |
彭勃, 赵晓雷, 王奕, 袁文娅, 李春辉, 李永祥, 张登峰, 石云素, 宋燕春, 王天宇, 黎裕. 玉米叶向值的全基因组关联分析. 作物学报, 2020, 46: 819-831.
doi: 10.3724/SP.J.1006.2020.93063 |
Peng B, Zhao X L, Wang Y, Yuan Y W, Li C H, Li Y X, Zhang D F, Shi S Y, Song C Y, Wang T Y, Li Y. Genome-wide association studies of leaf orientation value in maize. Acta Agron Sin, 2020, 46: 819-831. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93063 |
|
[33] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945 pmid: 10835412 |
[34] |
Jakobsson M, Rosenberg N A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 2007, 23: 1801-1806.
doi: 10.1093/bioinformatics/btm233 pmid: 17485429 |
[35] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[36] |
Wang J B, Zhang Z W. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genom Proteom Bioinf, 2021, 19: 629-640.
doi: 10.1016/j.gpb.2021.08.005 pmid: 34492338 |
[37] |
Zhang Y W, Tamba C L, Wen Y J, Li P, Ren W L, Ni Y L, Gao J, Zhang Y M. mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies. Genom Proteom Bioinf, 2020, 18: 481-487.
doi: 10.1016/j.gpb.2020.06.006 |
[38] |
Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672 |
[39] |
Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
doi: 10.1111/nph.v234.2 |
[40] |
Ning Q, Jian Y N, Du Y, Li Y F, Shen X M, Jia H T, Zhao R, Zhan J M, Yang F, Jackson D, Liu L, Zhang Z W. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun, 2021, 12: 5832-5842.
doi: 10.1038/s41467-021-26123-z pmid: 34611160 |
[41] |
Pérez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198: 483-495.
doi: 10.1534/genetics.114.164442 pmid: 25009151 |
[42] |
Zhang Y M, Jia Z, Dunwell J M. The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci, 2019, 10: 100-105.
doi: 10.3389/fpls.2019.00100 |
[43] |
An Y X, Chen L, Li Y X, Li C H, Shi Y S, Zhang D F, Li Y, Wang T Y. Genome-wide association studies and whole-genome prediction reveal the genetic architecture of KRN in maize. BMC Plant Biol, 2020, 20: 490-500.
doi: 10.1186/s12870-020-02676-x pmid: 33109077 |
[44] | Zhou B, Zhou Z J, Ding J Q, Zhang X C, Mu C, Wu Y, Gao J Y, Song Y X, Wang S W, Ma J L, Li X T, Wang R X, Xia Z L, Chen J F, Wu J Y. Combining three mapping strategies to reveal quantitative trait loci and candidate genes for maize ear length. Plant Genome, 2018, 11: 1-8. |
[45] |
Li D D, Zhou Z Q, Lu X H, Jiang Y, Li G L, Li J H, Wang H Y, Chen S J, Li X H, Würschum T, Reif J C, Xu S Z, Li M S, Liu W X. Genetic dissection of hybrid performance and heterosis for yield-related traits in maize. Front Plant Sci, 2021, 12: 774478-774496.
doi: 10.3389/fpls.2021.774478 |
[46] |
Su C F, Wang W, Gong S L, Zuo J H, Li S J, Xu S Z. High density linkage map construction and mapping of yield trait QTLs in maize (Zea mays) using the genotyping-by-sequencing (GBS) technology. Front Plant Sci, 2017, 8: 706-719.
doi: 10.3389/fpls.2017.00706 |
[47] |
Chen L, An Y X, Li Y X, Li C H, Shi Y S, Song Y C, Zhang D F, Wang T Y, Li Y. Candidate loci for yield-related traits in maize revealed by a combination of MetaQTL analysis and regional association mapping. Front Plant Sci, 2017, 8: 2190-2203.
doi: 10.3389/fpls.2017.02190 pmid: 29312420 |
[48] |
Zhou Z P, Li G L, Tan S Y, Li D D, Liu W X. A QTL atlas for grain yield and its component traits in maize (Zea mays). Plant Breed, 2020, 139: 562-574.
doi: 10.1111/pbr.v139.3 |
[49] |
Zhao Y M, Su C F. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Sci Rep, 2019, 9: 16112-16121.
doi: 10.1038/s41598-019-52222-5 pmid: 31695075 |
[50] |
Lu X, Zhou Z Q, Yuan Z H, Zhang C S, Hao Z F, Wang Z H, Li M S, Zhang D G, Yong H J, Han J N, Li X H, Weng J F. Genetic dissection of the general combining ability of yield-related traits in maize. Front Plant Sci, 2020, 11: 788-802.
doi: 10.3389/fpls.2020.00788 pmid: 32793248 |
[51] |
Galli M, Liu Q J, Moss B L, Malcomber S, Li W, Gaines C, Federici S, Roshkovan J, Meeley R, Nemhauser J L, Gallavotti A. Auxin signaling modules regulate maize inflorescence architecture. Proc Natl Acad Sci USA, 2015, 112: 13372-13377.
doi: 10.1073/pnas.1516473112 pmid: 26464512 |
[52] |
Koops P, Pelser S, Ignatz M, Klose C, Marrocco-Selden K, Kretsch T. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana. J Exp Bot, 2011, 62: 5547-5560.
doi: 10.1093/jxb/err236 |
[53] |
Zhang H H, Yin L L, Wang M Y, Yuan X H, Liu X L. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Front Genet, 2019, 10: 189-198.
doi: 10.3389/fgene.2019.00189 pmid: 30923535 |
[54] |
Tehseen M M, Kehel Z, Sansaloni C P, Lopes M D S, Amri A, Kurtulus E, Nazari K. Comparison of genomic prediction methods for yellow, stem, and leaf rust resistance in wheat landraces from Afghanistan. Plants, 2021, 10: 558-572.
doi: 10.3390/plants10030558 |
[55] |
Ma J, Cao Y Y. Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Front Plant Sci, 2021, 12: 690059-690069.
doi: 10.3389/fpls.2021.690059 |
[56] |
Lozada D N, Mason R E, Sarinelli J M, Brown-Guedira G. Accuracy of genomic selection for grain yield and agronomic traits in soft red winter wheat. BMC Genet, 2019, 20: 82.
doi: 10.1186/s12863-019-0785-1 pmid: 31675927 |
[57] |
Odilbekov F, Armoniené R, Koc A, Svensson J, Chawade A. GWAS-assisted genomic prediction to predict resistance to Septoria tritici Blotch in Nordic winter wheat at seedling stage. Front Genet, 2019, 10: 1224-1233.
doi: 10.3389/fgene.2019.01224 pmid: 31850073 |
[58] | 马娟, 朱卫红, 丁俊强. 玉米重要农艺性状的基因组预测分析. 玉米科学, 2022, 30(1): 48-52. |
Ma J, Zhu W H, Ding J Q. Genomic prediction analysis for maize important agronomic traits. J Maize Sci, 2022, 30(1): 48-52. (in Chinese with English abstract) | |
[59] |
Arruda M, Lipka A, Brown P, Krill A, Thurber C, Brown-Guedira G, Dong Y, Foresman B J, Kolb F L. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum). Mol Breed, 2016, 36: 1-11.
doi: 10.1007/s11032-015-0425-z |
[60] |
Bernardo R. Genomewide selection when major genes are known. Crop Sci, 2014, 54: 68-75.
doi: 10.2135/cropsci2013.05.0315 |
[61] |
Yuan Y, Cairns J E, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu Y B, Wang N, Hao Z F, San V F, Olsen M S, Prasanna B M, Lu Y L, Zhang X C. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci, 2019, 9: 1919-1933.
doi: 10.3389/fpls.2018.01919 |
[62] |
Liu Y B, Hu G H, Zhang A, Loladze A, Hu Y X, Wang H, Qu J T, Zhang X C, Olsen M, Vicente F S, Crossa J, Lin F, Prasanna B M. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. Crop J, 2021, 9: 325-341.
doi: 10.1016/j.cj.2020.08.008 |
[63] | Cericola F, Jahoor A, Orabi J, Andersen J R, Janss L L, Jensen J. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information: a case of study in advanced wheat breeding lines. PLoS One, 2017, 12: e0169606. |
[1] | XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633. |
[2] | YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154. |
[3] | Jian-Bo HE,Fang-Dong LIU,Guang-Nan XING,Wu-Bin WANG,Tuan-Jie ZHAO,Rong-Zhan GUAN,Jun-Yi GAI. Characterization and Analytical Programs of the Restricted Two-stage Multi- locus Genome-wide Association Analysis [J]. Acta Agronomica Sinica, 2018, 44(9): 1274-1289. |
[4] | MA Yan-Song, LIU Zhang-Xiong, WEN Zi-Xiang, WEI Shu-Hong, YANG Chun-Ming, WANG Hui-Cai6, YANG Chun-Yan, LU Wei-Guo, XU Ran, ZHANG Wan-Hai, WU Ji-An, HU Guo-Hua, LUAN Xiao-Yan, FU . Effect of Population Structure on Prediction Accuracy of Soybean 100-Seed Weight by Genomic Selection MA Yan-Song1,2,13, LIU Zhang-Xiong1, WEN Zi-Xiang3, WEI Shu-Hong4, YANG Chun-Ming5, WANG Hui-Cai6, YANG [J]. Acta Agron Sin, 2018, 44(01): 43-52. |
[5] | WANG Bo-Xin,WANG Ya-Hui,CHEN Peng-Fei,LIU Xu-Dong-Yu,FENG Zhi-Qian,HAO Yin-Chuan,ZHANG Ren-He,ZHANG Xing-Hua,XUE Ji-Quan*. Combining Ability of Maize Inbred Lines from ShaanA Group and Shaan B Group under Different Density Conditions [J]. Acta Agron Sin, 2017, 43(09): 1328-1336. |
[6] | WANG Jian-Jun,YONG Hong-Jun,ZHANG Xiao-Cong,LI Ming-Shun,ZHANG De-Gui,BAI Li,GAO Zhi-Qiang,ZHANG Shi-Huang,LI Xin-Hai. Combining Ability and Heterosis Effects between 12 Exotic Maize Populations and Domestic Germplasm [J]. Acta Agron Sin, 2012, 38(12): 2170-2177. |
[7] | SHU Yong-Dun, TUN Lei, WANG Dan, GUO Chang-Gong. Application of Artificial Neural Network in Genomic Selection for Crop Improvement [J]. Acta Agron Sin, 2011, 37(12): 2179-2186. |
[8] | CHEN Hong-Mei, WANG Yan-Fen, YAO Wen-Hua, LUO Li-Ming, LI Jia-Li, XU Chun-Xia, PAN Xin-Meng, GUO Hua-Chun. Utilization Potential of the Temperate Maize Inbreds Integrated with Tropical Germplasm [J]. Acta Agron Sin, 2011, 37(10): 1785-1793. |
[9] | YANG Jia-Yin,GAI Jun-Yi. Heterosis,Combining Ability and Their Genetic Basis of Yield among Key Parental Materials of soybean in Huang-Huai Valleys [J]. Acta Agron Sin, 2009, 35(4): 620-630. |
|