Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1994-2001.doi: 10.3724/SP.J.1006.2023.24196
• RESEARCH NOTES • Previous Articles Next Articles
SUO Hai-Cui(), LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo*()
[1] | Bouis H E, Hotz C, McClafferty B, Meenakshi J V, Pfeiffer W H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull, 2011, 32: S31-S40. |
[2] | 古秋霞, 林群, 黄修杰. 2015年广东马铃薯产业发展形势与对策建议. 广东农业科学, 2016, 43(3): 21-24. |
Gu Q X, Lin Q, Huang X J. Development situation and countermeasures of potato industry in Guangdong in 2015. Guangdong Agric Sci, 2016, 43(3): 21-24. (in Chinese with English abstract) | |
[3] |
Monsant A C, Kappen P, Wang Y, Pigram P J, Baker A J M, Tang C. In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure. Plant Soil, 2011, 1: 167-183.
doi: 10.1007/BF02080924 |
[4] | López-millán A F, Ellis D R, Grusak M A. Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol, 2004, 54: 583-596. |
[5] |
Eide D, Broderius M, Fett J, Guerinot M L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA, 1996, 93: 5624-5628.
doi: 10.1073/pnas.93.11.5624 pmid: 8643627 |
[6] | Wang Y H, Yang J, Miao R, Kang Y, Qi Z. A novel zinc transporter essential for Arabidopsis zinc and iron-dependent growth. J Plant Physiol, 2021, 256: 15329. |
[7] |
Milner M J, Jesse S, Eric C, Kochian L V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369-381.
doi: 10.1093/jxb/ers315 pmid: 23264639 |
[8] |
Lin Y F, Liang H M, Yang S Y, Boch A, Clemens S, Chen C C, Wu J F, Huang J L, Yeh K C. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol, 2009, 182: 392-404.
doi: 10.1111/j.1469-8137.2009.02766.x pmid: 19210716 |
[9] | Grégory V, Grotz N, Fabienne D, Frédéric G, Curie C. Irt1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 6: 1223-1233. |
[10] | Connolly E L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 2002, 6: 1347-1357. |
[11] |
Grégory V, Jean-François B, Curie C. Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J, 2001, 26: 181-189.
doi: 10.1046/j.1365-313x.2001.01018.x |
[12] | Rogers E E, Eide D J, Guerinot M L. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA, 2000, 22: 12356-12360. |
[13] |
Lee S, Jeong H J, Kim S A, Lee J, Guerinot M L, An G. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol, 2010, 73: 507-517.
doi: 10.1007/s11103-010-9637-0 pmid: 20419467 |
[14] | Yang X, Huang J, Jiang Y, Zhang H S. Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep, 2009, 2: 281-287. |
[15] |
Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol, 2008, 55: 400-409.
doi: 10.1134/S1021443708030175 |
[16] |
Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot, 2007, 58: 2909-2915.
doi: 10.1093/jxb/erm147 pmid: 17630290 |
[17] |
Kabir A H, Akther M S, Skalicky M, Das U, Hossain M M. Downregulation of Zn transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn deficient tomato. Sci Rep, 2021, 11: 6040.
doi: 10.1038/s41598-021-85649-w |
[18] |
Tiong J L, Mcdonald G K, Genc Y, Pedas P, Hayes J E, Toubia J, Langridge P, Huang C Y. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol, 2013, 201: 131-143.
doi: 10.1111/nph.2013.201.issue-1 |
[19] |
Ramesh S A, Choimes S, Schachtman D P. Over-expression of an Arabidopsis zinc transporter in hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol, 2004, 54: 373-385.
doi: 10.1023/B:PLAN.0000036370.70912.34 |
[20] |
Gaitánsolís E, Taylor N J, Dimuth S, William S, Schachtman D P. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning. Front Plant Sci, 2015, 6: 492.
doi: 10.3389/fpls.2015.00492 pmid: 26217349 |
[21] |
Guerinot M L. The ZIP family of metal transporters. Biochim Biophys Acta, 2000, 1465: 190-198.
doi: 10.1016/s0005-2736(00)00138-3 pmid: 10748254 |
[22] |
Williams L E, Pittman J K, Hall J L. Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta, 2000, 1465: 104-126.
pmid: 10748249 |
[23] |
Gaxiola R A, Fink G R, Hirschi K D. Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol, 2002, 129: 967-973.
pmid: 12114553 |
[24] |
Mills R F, Krijger G C, Baccarini P J, Hall J L, Williams L E. Functional expression of At HMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J, 2003, 35: 164-176.
doi: 10.1046/j.1365-313X.2003.01790.x |
[25] | 张丽婷, 王志强, 马兴立, 彭凌馨, 郭瑞盼, 王俊哲, 刘康, 林同保. 植物中锌转运蛋白的研究进展. 贵州农业科学, 2014, 42(8): 55-60. |
Zhang L T, Wang Z Q, Ma X L, Peng L X, Guo R P, Wang J Z, Liu K, Lin T B. Research progress of zinc transporters in plants. Guizhou Agric Sci, 2014, 42(8): 55-60. (in Chinese with English abstract) | |
[26] | Henriques A R, Chalfun-Junior A, Aarts M. Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazi J Plant Physiol, 2011, 24: 3-8. |
[27] |
López Millán A F, Ellis D R, Grusak M A. Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci, 2005, 168: 1015-1022.
doi: 10.1016/j.plantsci.2004.11.018 |
[28] |
Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA, 1996, 93: 2454-2458.
doi: 10.1073/pnas.93.6.2454 pmid: 8637895 |
[29] |
Li X B, Suo H C, Liu J T, Wang L, Li C C, Liu W. Genome-wide identification and expression analysis of the potato ZIP gene family under Zn-deficienc. Biol Planta, 2020, 64: 845-855.
doi: 10.32615/bp.2020.125 |
[30] |
武亮亮, 姚磊, 马瑞, 朱熙, 杨江伟, 张宁, 司怀军. 马铃薯HD-Zip I家族ATHB12基因的克隆及功能鉴定. 作物学报, 2016, 42: 1112-1121.
doi: 10.3724/SP.J.1006.2016.01112 |
Wu L L, Yao L, Ma R, Zhu X, Yang J W, Zhang N, Si H J. Cloning and functional identification of the ATHB12 gene of HD-Zip I family in potato (Solanum tuberosum L.). Acta Agron Sin, 2016, 42: 1112-1121. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01112 |
|
[31] | 傅明辉, 陈肖丽. 植物锌铁转运蛋白ZIP家族的生物信息学分析. 广东农业科学, 2015, 42(1): 124-132. |
Fu M H, Chen X L. Bioinformatic analysis of ZIP family of zinc and iron transporters in plants. Guangdong Agric Sci, 2015, 42(1): 124-132. (in Chinese with English abstract) | |
[32] |
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+, transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr, 2006, 52: 464-469.
doi: 10.1111/j.1747-0765.2006.00055.x |
[33] |
Tan L T, Qu M M, Zhu Y X, Peng C, Wang J R, Gao D Y, Chen C Y. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol, 2020, 183: 1235-1249.
doi: 10.1104/pp.19.01569 pmid: 32341004 |
[34] |
Li S Z, Zhou X J, Huang Y Q, Zhu L Y, Zhang S J, Zhao Y F, Guo J J, Chen J T, Chen R. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol, 2013, 13: 114.
doi: 10.1186/1471-2229-13-114 pmid: 23924433 |
[35] |
Fu X Z, Zhou X, Xing F, Ling L L, Peng L Z. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (ZIP) gene family in trifoliate orange (Poncirus trifoliata L. Raf.). Front Plant Sci, 2017, 8: 588.
doi: 10.3389/fpls.2017.00588 pmid: 28469631 |
[36] |
Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanumanthareddy R R, Makarla U, Guligowda S A. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep, 2013, 7: 309-319.
doi: 10.1007/s11816-012-0264-x |
[37] |
Huang S, Ma J F. Silicon suppresses zinc uptake through down-regulating zinc transporter gene in rice. Physiol Planta, 2020, 170: 580-591.
doi: 10.1111/ppl.v170.4 |
[38] |
Huang S, Sasaki A, Yamaji N, Okada H, Mitani-Ueno N, Ma J F. The ZIP transporter family member OsZIP9 contributes to root zinc uptake in rice under zinc-limited conditions. Plant Physiol, 2020, 183: 1224-1234.
doi: 10.1104/pp.20.00125 pmid: 32371522 |
[39] |
Youngsup S, Ryuichi T, Hiromi N, Takashi Y. Sweet potato expressing the rice Zn transporter OsZIP4 exhibits high Zn content in the tuber. Plant Biotechnol, 2016, 33: 99-104.
doi: 10.5511/plantbiotechnology.16.0328a |
[40] |
Tan L T, Zhu Y X, Fan T, Peng C, Wang J R. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun, 2019, 512: 112-118.
doi: 10.1016/j.bbrc.2019.03.024 |
[41] |
Ricachenevsky F K, Punshon T, Lee S, Oliveira B H N, Trenz T S, Maraschin F S, Hindt M N, Danku J, Salt D E, Fett J P, Guerinot M L. Elemental profiling of rice FOX lines leads to characterization of a new Zn plasma membrane transporter, OsZIP7. Front Plant Sci, 2018, 9: 865.
doi: 10.3389/fpls.2018.00865 pmid: 30018622 |
[1] | JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274. |
[2] | ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870. |
[3] | WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798. |
[4] | MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725. |
[5] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[6] | CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261. |
[7] | LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937. |
[8] | LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995. |
[9] | ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005. |
[10] | WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101. |
[11] | WANG Shuo, BAO Tian-Yang, LIU Jian-Gang, DUAN Shao-Guang, JIAN Yin-Qiao, LI Guang-Cun, JIN Li-Ping, XU Jian-Fei. Potato tuber greening evaluation based on RGB color space [J]. Acta Agronomica Sinica, 2023, 49(4): 1102-1110. |
[12] | PU Xue, WANG Kai-Tong, ZHANG Ning, SI Huai-Jun. Relative expression analysis of StMAPKK4 gene and screening and identification of its interacting proteins in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2023, 49(1): 36-45. |
[13] | WU Xu-Li, WU Zheng-Dan, WAN Chuan-Fang, DU Ye, GAO Yan, LI Ze-Xuan, WANG Zhi-Qian, TANG Dao-Bin, WANG Ji-Chun, ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(1): 129-139. |
[14] | YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241. |
[15] | HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284. |
|