Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2160-2170.doi: 10.3724/SP.J.1006.2023.24190

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

QTLs mapping for single-seed weight of cultivated peanut

LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen(), WAN Yong-Shan()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2022-08-16 Accepted:2023-02-10 Online:2023-08-12 Published:2023-03-02
  • Contact: LIU Feng-Zhen,WAN Yong-Shan E-mail:liufz@sdau.edu.cn;yswan@sdau.edu.cn
  • Supported by:
    Construction Project of Shandong Peanut Industrial Technology System(SDAIT-04-03);Shandong Agricultural Improved Varieties Engineering Project(2020LZGC001);Shandong Provincial Key Research and Development Program(2019GNC106002);China Agriculture Research System of MOF and MARA(CARS-13)

Abstract:

Peanut (Arachis hypogaea L.) is an important oil and cash crop in China, and the single-seed weight is one of the important traits that determine the yield and commodity of peanut. In this study, QTLs mapping for single-seed weight of peanut was performed using RIL population constructed from a cross between large-kernel variety Shanhua 15 (female) and small-kernel variety Zhonghua 12 (male), based on a high-density genetic map. Nine QTLs related to single-seed weight were identified on seven chromosomes (A04, A06, A07, B05, B07, B09, and B10). The LOD values of these QTLs was 3.01-33.97, phenotypic variation contribution rates was 2.61%-34.28%, the additive effect values were -0.03 to 0.15 g, and the physical range of positioning was 0.03-4.32 Mb. qSSWA07.1 was a stable major QTL repeatedly detected in six planting environments, and qSSWA06.1 and qSSWB09.1 were repeatedly detected in four planting environments. The additive effect of qSSWA07.1 and qSSWA06.1 were positive, and the favorable alleles were inherited from Shanhua 15. The additive effect of qSSWB09.1 was negative, and the favorable allele was inherited from Zhonghua 12. The additive effect of qSSWA06.1, qSSWA07.1, and qSSWB09.1 on peanut single-seed weight was analyzed with the genotype of three bin markers (A06: Block3344, A07: Block3373, and B09: Block10032) closely-linked with QTLs. The mean value of single-seed weight of lines with three favorable alleles was the largest, and that of the lines without the favorable alleles was the smallest. The candidate genes in qSSWA06.1, qSSWA07.1, and qSSWB09.1 were analyzed by KEGG enrichment pathway, according to the expression in different tissues and functional annotation of these genes, four candidate genes were predicted, Arahy.9UY90I, Arahy.RX7YKY, Arahy.3ZC2CN, and Arahy.9V2WXE, which may play a significant role in the regulation of peanut seed growth and development. The results provided the reference for the genetic improvement of yield related traits in peanut.

Key words: peanut, single-seed weight, QTLs mapping, candidate genes

Table 1

Statistical analysis of single-seed weight traits in parental and RIL populations"

种植环境
Planting environment
亲本Parent RIL群体 RIL population
山花15号
Shanhua 15
中花12号
Zhonghua 12
最大值
Max.
最小值
Min.
平均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2014 1.39 0.71** 1.63 0.41 0.93 0.25 26.88 0.291 -0.413
2015 1.21 0.58** 1.33 0.22 0.74 0.18 24.32 0.283 0.286
2016 1.08 0.42** 1.24 0.24 0.64 0.18 28.13 0.414 0.217
2017 1.14 0.75** 1.52 0.59 0.94 0.19 20.21 0.354 -0.209
2020 1.18 0.76** 1.57 0.48 0.97 0.21 21.68 0.116 -0.543
2021 1.16 0.76** 1.21 0.33 0.76 0.17 22.37 0.027 -0.437

Fig. 1

Distribution of single-seed weight in peanut RIL population 2014, 2015, 2016, 2017, 2020, and 2021 represent different planting environments, respectively. RIL: recombinant inbred lines."

Fig. 2

Genomic distribution of QTL related to single-seed weight of peanut 2014, 2015, 2016, 2017, 2020, and 2021 represent planting environments, respectively. A04, A06, A07, B05, B07, B09, and B10 represent different chromosomes, respectively."

Table 2

QTLs information of peanut seed-single weight"

QTL 种植环境
Planting environment
染色体
Chr.
标记区间
Marker interval
物理区间长度
Physical interval length (Mb)
阈值
LOD
贡献率
PVE (%)
加性效应
ADD (g)
qSSWA04.1 2015 A04 Block1622-Block1625 2.05 3.01 3.41 -0.03
qSSWA06.1 2021 A06 Block3360-Block3309 4.32 6.82 5.83 0.05
2020 8.30 7.61 0.05
2017 10.24 9.40 0.06
2014 8.11 7.39 0.07
qSSWA07.1 2021 A07 Block3421-Block3366 1.39 31.02 32.30 0.10
2020 33.62 34.06 0.11
2017 33.97 34.28 0.12
2016 13.75 16.36 0.07
2015 18.57 21.34 0.08
2014 30.17 31.34 0.15
qSSWB05.1 2020 B05 Block7608-Block7556 0.84 3.12 2.92 0.04
qSSWB05.2 2017 B05 Block7651-Block7587 3.01 4.34 3.33 0.03
qSSWB07.1 2014 B07 Block8272-Block8264 0.40 3.80 4.12 0.05
qSSWB07.2 2020 B07 Block8284-Block8285 0.03 3.08 2.61 0.04
qSSWB09.1 2021 B09 Block10054-Block10004 1.45 5.27 4.21 -0.04
2020 5.79 4.48 -0.04
2017 7.12 6.38 -0.04
2014 6.30 5.39 -0.06
qSSWB10.1 2015 B10 Block10084-Block10083 0.58 3.16 3.36 0.03

Fig. 3

Phenotypic effects of qSSWA06.1, qSSWA07.1, and qSSWB09.1 in population 2014, 2015, 2016, 2017, 2020, and 2021 represent different planting environments, respectively. AABBCC, AAbbcc, AABBcc, AAbbCC, aaBBCC, aaBBcc, aabbCC, and aabbcc represent different genotypes, respectively."

Fig. 4

KEGG enrichment pathway of candidate genes in physical interval of QTL for peanut single-seed weight A07, B09, and A06 represent different chromosomes, respectively."

Fig. 5

Relative expression pattern of 12 candidate genes in different tissues of peanut The darker the color, the higher the expression, and the lower the vice versa."

Table 3

Candidate genes of qSSWA06.1, qSSWA07.1, and qSSWB09.1"

基因 ID
Gene ID
染色体
Chr.
物理区间
Physical interval (bp)
基因家族
Gene family
功能注释
Functional description
Arahy.9UY90I A07 447423-452848 legfed_v1_0.L_MWNP2J 烯醇酶
Enolase
Arahy.KE1FF5 A07 955911-958635 legfed_v1_0.L_KG5CQL 半胱氨酸合酶/半胱氨酸β合酶
Cysteine synthase/cystathionine β-synthase
Arahy.K4CMZR A07 1001166-1002296 legfed_v1_0.L_1XK45N 丝氨酸O-乙酰转移酶
Serine O-acetyltransferase
Arahy.K0DIZR A07 1218259-1224643 legfed_v1_0.L_0GKWV0 ABC转运蛋白1型
ABC transporter type 1
Arahy.RX7YKY B09 157391371-157396195 legfed_v1_0.L_BH5DLF 甜菜碱同型半胱氨酸甲基转移酶
Betaine-homocysteine methyltransferase
Arahy.E9249P B09 157550706-157553539 legfed_v1_0.L_0C7SKC 类RmlC-like cupins蛋白
Proteins similar to the RmlC-like cupins
Arahy.IQP7TJ B09 157714814-157717184 legfed_v1_0.L_FMT5KJ 糖苷水解酶
Glycoside hydrolase
Arahy.QJT344 A06 110434786-110446942 legfed_v1_0.L_9WXLVF 泛素特异性蛋白酶
Ubiquitin specific proteases
Arahy.3ZC2CN A06 110489370-110491090 legfed_v1_0.L_63KDF3 LSM蛋白质
LSM proteins
Arahy.S90AI0 A06 112231732-112241188 legfed_v1_0.L_J3GGX7 核转录和剪接因子
Nuclear transcription and splicing factors
Arahy.57RIKC A06 110715861-110721136 legfed_v1_0.L_F86644 磷酸吡哆醛依赖性转移酶
Pyridoxal phosphate-dependent transferase
Arahy.9V2WXE A06 111734794-111743008 legfed_v1_0.L_RNPQZ0 真核翻译起始因子
Eukaryotic translation initiation factor
[1] Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
doi: 10.1016/j.fcr.2011.02.010
[2] 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26.
Yang Y, Feng J, Wu C Y. Problems facing peanut production in China and suggestions on mechanization measures. Agric Mach Technol Extens, 2021, (11): 24-26. (in Chinese)
[3] 李振动.花生荚果及种子大小相关性状的QTL分析。中国农业科学院硕士学位论文, 北京, 2015.
Li Z D. QTL Analysis for Pod and Seed Traits in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[4] Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26.
doi: 10.1186/1471-2229-12-26 pmid: 22340522
[5] 成良强.花生遗传图谱构建及产量相关性状的QTL分析中国农业科学院硕士学位论文, 北京, 2014.
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract)
[6] Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[7] 曾新颖.花生荚果和籽仁大小相关性状QTL定位海南大学硕士学位论文, 海南海口, 2019.
Zeng X Y. QTL Analysis of Pod and Kernel Size Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Hainan University, Haikou, Hainan, China, 2019. (in Chinese with English abstract)
[8] 崔凤高, 胡晓辉, 苗华荣, 张胜忠, 王娟, 王嵩, 侯刚, 隋洁, 张建成, 陈静. 花生百果质量和百仁质量性状的QTL定位分析. 中国油料作物学报, 2021, 43: 1025-1030.
Cui F G, Hu X H, Miao H R, Zhang S Z, Wang J, Wang S, Hou G, Sui J, Zhang J C, Chen J. QTL mapping for 100-pod and 100-seed weights in cultivated peanut. Chin J Oil Crop Sci, 2021, 43: 1025-1030. (in Chinese with English abstract)
[9] Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384.
doi: 10.1007/BF01184927 pmid: 24190266
[10] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837.
doi: 10.1093/genetics/159.2.823 pmid: 11606556
[11] Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1-11.
pmid: 15729391
[12] Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018, 16: 1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729
[13] Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635
[14] Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J, Huai D, Lei Y, Jiang H, Yan L, Liao B. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus Infection in peanut. Front Plant Sci, 2021, 12: 745408.
doi: 10.3389/fpls.2021.745408
[15] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[16] Saito K, Yokoyama H, Noji M, Murakoshi I. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem, 1995, 270: 16321-16326.
doi: 10.1074/jbc.270.27.16321 pmid: 7608200
[17] Saito K, Kurosawa M, Murakoshi I. Determination of a functional lysine residue of a plant cysteine synthase by site-directed mutagenesis, and the molecular evolutionary implications. FEBS Lett, 1993, 328: 111-114.
pmid: 8344414
[18] Lal S K, Johnson S, Conway T, Kelley P M. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol, 1991, 16: 787-795.
pmid: 1859865
[19] Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853-859.
doi: 10.1016/S0969-2126(01)00220-9 pmid: 8535779
[20] Evans J C, Huddler D P, Jiracek J, Castro C, Millian N S, Garrow T A, Ludwig M L. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure, 2002, 10: 1159-1171.
pmid: 12220488
[21] 高弘扬, 周良云, 罗碧, 许丹芸, 杨全. 乙烯信号转导及其在植物逆境响应中的作用. 江苏农业科学, 2020, 48(12): 15-19.
Gao H Y, Zhou L Y, Luo B, Xu D Y, Yang Q. Ethylene signal transduction and its role in plant stress response. Jiangsu Agric Sci, 2020, 48(12): 15-19. (in Chinese)
[22] Hayashi H. Pyridoxal enzymes: mechanistic diversity and uniformity. J Biochem, 1995, 118: 463-473.
pmid: 8690703
[23] Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009, 5: 1797-1808.
doi: 10.1039/b907669g pmid: 19734957
[24] He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol, 2000, 12: 346-350.
pmid: 10801455
[25] Koonin E V. Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF-2B subunits revealed by analysis of conserved sequence motifs. Protein Sci, 1995, 4: 1608-1617.
pmid: 8520487
[26] 殷冬梅, 李拴柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212-216.
Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212-216. (in Chinese with English abstract)
[27] 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农学通报, 2013, 19(16): 22-24.
Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agric Sci Bull, 2013, 19(16): 22-24. (in Chinese with English abstract)
[28] Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273
[29] Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor Appl Genet, 2022, 135: 1779-1795.
doi: 10.1007/s00122-022-04069-0 pmid: 35262768
[30] Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: S1369-5266(16)30083-8 pmid: 27294659
[31] Li N, Xu R, Duan P, Li Y. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952
[32] Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7
[33] Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). Crop J, 2022, 10: 820-829.
doi: 10.1016/j.cj.2021.09.003
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[3] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[4] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[5] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[6] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[7] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[8] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[9] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[10] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[11] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[12] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[13] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[14] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[15] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .