Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2171-2182.doi: 10.3724/SP.J.1006.2023.24193

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress

WEN Li-Chao1,2(), XIONG Tao3, DENG Zhi-Chao1,2, LIU Tao1,2, GUO Cun4, LI Wei1,*(), GUO Yong-Feng1,*()   

  1. 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Enshi Tobacco Company, Enshi 445000, Hubei, China
    4 Kunming Tobacco Company, Kunming 650000, Yunnan, China
  • Received:2022-08-23 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-28
  • Contact: LI Wei,GUO Yong-Feng E-mail:82101201624@caas.cn;liwei06@caas.cn;guoyongfeng@caas.cn.
  • Supported by:
    National Natural Science Foundation of China(31400267);National Natural Science Foundation of China(31970204);Agricultural Science and Technology Innovation Program(ASTIP-TRIC02)

Abstract:

NAC proteins, which constitute one of the largest plant-specific transcription factor families, are widely involved in the regulation of plant development, senescence and stress responses. To explore the function of NtNAC080 in abiotic stress response, qRT-PCR was used to analyze the relative expression pattern of NtNAC080 genes under different abiotic stress treatments. Results showed that the relative expression level of NtNAC080 genes was induced by drought, salt, ABA, MeJA, and SA treatments. The NtNAC080 mutant and WT (K326) plants were used to analyze the phenotypes under salt and drought stresses. Results showed that NtNAC080 knockout tobacco lines had increased tolerance to salt and drought stresses. Under salt and drought stresses treatments, the antioxidant enzymes (SOD, POD, and CAT) activities, soluble protein, and proline contents of these two knockout lines plants were significantly higher than those of WT, while MDA content was significantly lower than that of WT. In contrast, NtNAC080-overexpressing Arabidopsis plants had more sensitive to salt and drought stresses. Furthermore, NtNAC080 mutation in tobacco resulted in the up-regulated expression of abiotic stress-related genes (NtDREB1A, NtKAT2, and NtNHX1) after salt and drought treatments. These results indicated that NtNAC080 could be play a negative role in response to salt and drought stresses by regulating the activity of antioxidant enzymes and the relative expression level of stress-related genes.

Key words: tobacco, NtNAC080, ROS, the relative expression analysis, abiotic stresses

Table 1

Primer sequences used for qRT-PCR"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward primer (5°-3°)
反向引物序列
Reverse primer (5°-3°)
NtActin XM_016618658 ACCTCTATGGCAACATTGTGCTCAG CTGGGAGCCAAAGCGGTGATT
NtNAC080 XM_016596133 TTCACGACTATTTGATGACAATGCTA TATTGGTCATTGTGTTTTGGTTGTT
NtDREB1A XM_016627803 TAACCCCAAGAAGCGAGCAG TAGCCGCCATTTCTGCAGAA
NtKAT2 XM_016602939 CCGCGCAAATCCAGAAGATG TGGCCCTCCATTTGTTTGGT
NtERF5 XM_016584910 TGGATGAAGAGCCAAGCCAT GAATCTCCGCCGCGAATTTC
NtNHX1 XM_016578291 CCCCCACAGAGGCAGTTAAG GCGCCAGTATCTATGCACCT
NtSOS1 XM_016611193 TCGCTTTGCTTGTTCTTGGC ACCGCCAACAGAAGATCAGG
AtActin NM_001338359 TGTGCCAATCTACGAGGGTTT TTTCCCGCTCTGCTGTTGT
AtDREB1A NM_118680 TTTCAAACCGCTGAGATGGC AAGCCGAGTCAGCGAAATTG
AtKAT2 NM_001341273 TTCGCCTTTGATGTCTGCTC TCTCAAGCCTTGCAAACAGC
AtERF5 NM_124094 CGCAGCTGAAAACACCAAAC AATTTCCCCCACGGTCTTTG
AtNHX1 NM_122597 GGTGCCATATTTGCTGCAAC ATCGCGTTGAAGACCACAAC
AtSOS1 NM_126259 ACCAATGAAACTGCGTGGTG ATGCAGCGAGTGATTGTTGC

Fig. 1

Relativeexpression profile of NtNAC080 genes LB: lateral bud; R: root; S: stem; UL: the upper leaf; ML: the middle leaf; LL: the low leaf; AP: the apical bud; F: flower. * means significant difference at the 0.05 probability level."

Fig. 2

Phenotypes of ntnac080 and wild-type tobacco under salt stress A: phenotypes of ntnac080 and K326 tobacco under control and NaCl treatment. B: seedlings were vertically cultivated on MS plates containing 0, 50, 100, 150, and 200 mmol L-1 NaCl. C-E: POD, SOD, and CAT activities of K326 and ntnac080 mutant under various concentration of salt treatment. F-H: MDA, soluble protein, and proline contents of K326 and ntnac080 mutant under salt treatment. * means significant difference at the 0.05 probability level."

Fig. 3

Phenotypes of ntnac080 and K326 tobacco under drought stress A: phenotypes of tobacco plants treated with drought stress. B-D: POD, SOD, and CAT activities of K326 and ntnac080 mutant under drought treatment. E: MDA content of K326 and ntnac080 mutant under drought treatment. * means significant difference at the 0.05 probability level. 0D: 0 day; 12D: 12 days."

Fig. 4

Phenotypes of NtNAC080-OE and wild-type plant under salt stress A: the relative expression analysis of NtNAC080 gene in transgenic Arabidopsis plants by qRT-PCR. B-C: the germination of WT and NtNAC080 overexpression lines with different concentrations NaCl. D: NBT staining. E: measurement of accumulation of H2O2 in detached leaves of plants with different genotypes. F-H: POD, SOD, and CAT activities of NtNAC080 overexpression lines and WT after salt treatment. I: phenotypes of NtNAC080 overexpression lines (OE3 and OE6) and WT under drought stress treatment. J: the survival rates of NtNAC080 overexpression lines and WT after the drought stress. K: water loss rates of detached leaves from NtNAC080 overexpression lines and WT. * means significant difference at the 0.05 probability level."

Fig. 5

Relative expression patterns of stress responsive genes in ntnac080 and WT plants under salt and drought treatments"

Fig. 6

Relative expression patterns of stress responsive genes in NtNAC080-OE and WT plants under salt and drought treatments * means significant difference at the 0.05 probability level."

[1] 张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响. 华北农学报, 2018, 33(3): 176-181.
doi: 10.7668/hbnxb.2018.03.026
Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidaseactivities. Acta Agric Boreali-Sin, 2018, 33(3): 176-181. (in Chinese with English abstract)
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Eograph, 2011, 66: 673-684. (in Chinese with English abstract)
[4] 陈鑫, 马超, 杨永娟, 王红玲, 黄盈, 张晓霞, 黄开封, 赵卓, 张素芝. 转碱蓬SsNHX1基因烟草的耐盐抗旱性研究. 中国生态农业学报, 2017, 25: 1518-1526.
Chen X, Ma C, Yang Y J, Wang H L, Huang Y, Zhang X X, Huang K F, Zhao Z, Zhang S Z. Overexpression of Suaeda salsa SsNHX1 gene enhanced salt and drought tolerance of transgenic tobacco. Chin J Eco-Agric, 2017, 25: 1518-1526. (in Chinese with English abstract)
[5] Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x
[6] 郭亚宁.NAC转录因子在陆地棉叶片衰老中的作用. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Guo Y N.The Function of NAC TFs in Leaf Senescence of Upland Cotton. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[7] Balazadeh S, Riano-Pachon D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol, 2008, 10: 63-75.
doi: 10.1111/plb.2008.10.issue-s1
[8] Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597
[9] 朱冬梅, 贾媛, 崔继哲, 付畅. 植物对盐胁迫应答的转录因子及其生物学特性. 生物技术通报, 2010, (4): 16-21.
Zhu D M, Jia Y, Cui J Z, Fu C. Plant transcription factors in response to salt stress and its biological characteristic. Biotechnol Bull, 2010, (4): 16-21. (in Chinese with English abstract)
[10] Kim S G, Lee S, Seo P J, Kim S K, Kim J K, Park C M. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95: 56-65.
doi: 10.1016/j.ygeno.2009.09.003
[11] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L.Overexpressing a NAM, ATAF, and CUC NAC transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
doi: 10.1073/pnas.0604882103
[12] Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol, 2007, 176: 288-298.
doi: 10.1111/j.1469-8137.2007.02177.x pmid: 17888111
[13] Jeong J S, Kim Y S, Redillas M C, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J, 2013, 11: 101-114.
doi: 10.1111/pbi.12011 pmid: 23094910
[14] Zhang X, Long Y, Huang J, Xia J. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice, 2020, 13: 1-13.
doi: 10.1186/s12284-019-0361-3
[15] 任瑞, 张喜凤, 胡文韬, 钟丽梅, 余潮, 刘金龙. 拟南芥ANAC055基因突变体对高盐和渗透胁迫的响应. 基因组学与应用生物学, 2019, 38: 8.
Ren R, Zhang X F, Hu W T, Zhong L M, Yu C, Liu J L. The response of Arabidopsis ANAC055 gene mutant to high salt and osmotic stress. Genomics Appl Biol, 2019, 38: 8. (in Chinese with English abstract)
[16] Tran L P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498.
doi: 10.1105/tpc.104.022699
[17] Lee S, Lee H, Huh S U, Paek K, Ha J, Park C. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Sci, 2014, 227: 76-83.
doi: 10.1016/j.plantsci.2014.07.003
[18] Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R.TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012, 63: 2933-2946.
doi: 10.1093/jxb/err462 pmid: 22330896
[19] Xue G, Way H M, Richardson T, Drenth J, Joyce P A, Mcintyre C L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant, 2011, 4: 697-712.
doi: 10.1093/mp/ssr013
[20] Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep, 2014, 33: 1851-1863.
doi: 10.1007/s00299-014-1662-z
[21] Ma N N, Zuo Y Q, Liang X Q, Yin B, Wang G D, Meng Q W. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plant, 2013, 149: 474-486.
[22] Li X X, Wang Q, Guo C, Sun J, Li Z, Wang Y, Yang A, Pu W, Guo Y, Gao J. NtNAC053, A novel NAC transcription factor, confers drought and salt tolerances in tobacco. Front Plant Sci, 2022, 13: 817106-817106.
doi: 10.3389/fpls.2022.817106
[23] Xu X Y, Yao X Z, Lu L T, Zhao D G. Overexpression of the transcription factor NtNAC2 confers drought tolerance in tobacco. Plant Mol Biol, 2018, 36: 543-552.
[24] Li W, Li X X, Chao J T, Zhang Z L, Wang W F, Guo Y F. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence. Front Plant Sci, 2018, 9: 1900.
doi: 10.3389/fpls.2018.01900 pmid: 30622549
[25] 赵晓妮.刺五加和龙牙楤木体胚发生及其有效物质累积研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2013.
Zhao X N. Studies on Somatic Embryo Genesis and Effective Substances Accumulation of Acanthopanax senticosus and Araliaelata. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2013. (in Chinese with English abstract)
[26] 王群, 刘朝巍, 徐文娟. 紫外分光光度法测定玉米过氧化氢酶活性新进展. 中国农学通报, 2016, 32(15): 159-165.
doi: 10.11924/j.issn.1000-6850.casb16020031
Wang Q, Liu C W, Xu W J. Ultraviolet spectrophotometry measurement of catalase activity in maize. Chin Agric Sci Bull, 2016, 32(15): 159-165. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16020031
[27] 赵永斌, 盛雪, 肖丹, 林彤, 刘金阳. 山葡萄脯氨酸含量与温度的相关性. 榆林学院学报, 2012, 22(6): 10-13.
Zhao Y B, Sheng X, Xiao D, Lin T, Liu J Y. On correlation between proline content of amur grape and environment temperature. J Yulin Univ, 2012, 22(6): 10-13. (in Chinese with English abstract)
[28] 朱红芳, 李晓锋, 朱玉英, 郭欣欣, 刘金平, 高倩倩, 翟文. 根肿病对不结球白菜的生长及生理生化物质和活性氧代谢的影响. 西北植物学报, 2015, 35: 2469-2476.
Zhu H F, Li X F, Zhu Y Y, Guo X X, Liu J P, Gao Q Q, Zhai W. Effects of clubroot disease on growth physiochemical substance and reactive oxygen metabolism in pak-choi. Acta Bot Boreali-Occident Sin, 2015, 35: 2469-2476. (in Chinese with English abstract)
[29] Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56: 1472-1480.
doi: 10.1093/pcp/pcv063 pmid: 25941234
[30] 杨盛昌, 谢潮添, 张平, 陈德海, 丁印龙, 廖启炓. 低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化. 园艺学报, 2003, 30(1): 104-106.
Yang S C, Xie C T, Zhang P, Chen D H, Ding Y L, Liao Q L. Changes in membrane lipid peroxidation and activities of cell defense enzyme in leave es of Butia capitata Becc. seedling under low temperature stress. Acta Hortic Sin, 2003, 30(1): 104-106. (in Chinese with English abstract)
[31] 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林. 高等植物适应干旱生境研究进展. 草学, 2020, (3): 4-15.
Ren W, Gao H J, Wang R J, Lyu X P, He A L, Shao K Z, Wang Y P, Zhang J L. Research advances in adaptation of higher plants to arid habitats. J Grassland Forage Sci, 2020, (3): 4-15. (in Chinese with English abstract)
[32] 李志, 薛姣, 耿贵, 王宇光, 於丽华. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24): 39-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0113
Li Z, Xue J, Geng G, Wang Y G, Yu L H. The physiological characteristics of beets under stress. Chin Agric Sci Bull, 2021, 37(24): 39-47. (in Chinese with English abstract)
[33] 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76.
Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Sci Technol Res Dev, 2006, 28(4): 70-76. (in Chinese with English abstract)
[34] Guo Y F, Gan S S. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ, 2012, 35: 644-655.
doi: 10.1111/pce.2012.35.issue-3
[35] Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876
[36] Huang Q J, Wang Y, Li B, Chang J L, Chen M J, Li K X, Yang G X, He G Y.TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol, 2015, 15: 268.
doi: 10.1186/s12870-015-0644-9 pmid: 26536863
[37] Kou X H, Watkins C B, Gan S S. Arabidopsis AtNAP regulates fruit senescence. J Exp Bot, 2012, 63: 6139-6147.
doi: 10.1093/jxb/ers266
[38] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013.
doi: 10.1073/pnas.1321568111
[39] 杨洁.毛果杨PtNAC101基因在高盐胁迫中的功能分析. 鲁东大学硕士学位论文, 山东烟台, 2021.
Yang J. The Functional Analysis of PtNAC101 Gene in Populus trichocarpa under High Salt Stress. MS Thesis of Ludong University, Yantai, Shandong, China, 2021. (in Chinese with English abstract)
[40] 林少华, 张晓军, 张慧杰, 贾红亮, 潘妍, 罗红霞. 果蔬氧化还原防御系统研究进展. 中国果菜, 2021, 41(4): 33-39.
Lin S H, Zhang X J, Zhang H J, Jia H L, Pan Y, Luo H X. Research progress on redox defense system of fruits and vegetables. China Fruit Veget, 2021, 41(4): 33-39. (in Chinese with English abstract)
[41] 王晓娟.干旱胁迫对红花檵木生长和生理特性的影响. 四川农业大学硕士学位论文, 四川成都, 2015.
Wang X J. Growth and Physiological Characteristics of Loropetalum chinense under Drought Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract)
[42] Guo R, Zhao J, Wang X, Guo C, Li Z, Wang Y, Wang X. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Organ Cult, 2015, 121: 275-287.
doi: 10.1007/s11240-014-0699-6
[43] Boudmyxay K, 沈镭, 钟帅, 孙艳芝, 杨慧芹. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48.
Boudmyxay K, Shen L, Zhong S, Sun Y Z, Yang H Q. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming. J Shanxi Agric Sci, 2019, 47(1): 39-48. (in Chinese with English abstract)
[44] 黄建.农杆菌介导S6PDH基因转化枣树(Zyziphus jujube Mill.)的研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2006.
Huang J. Study on Agrobacterium-mediated Transformation of Zyziphus jujube with S6PDH Gene. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2006. (in Chinese with English abstract)
[45] 韩佩尧, 赵烨, 田彦挺, 侯荣轩, 孙宇涵, 李云. 植物耐盐机制及耐盐基因在杨树育种中的应用. 分子植物育种, 2021, 19: 7977-7983.
Han P Y, Zhao Y, Tian Y T, Hou R X, Sun Y H, Li Y. Mechanism of plant salt tolerance and application of salt tolerance gene in poplar breeding. Mol Plant Breed, 2021, 19: 7977-7983. (in Chinese with English abstract)
[46] 钟磊, 钱家萍, 蔡启忠, 王敏, 张慧晔, 杨全, 罗碧. 肉桂种子生物学特性及生活力研究. 种子, 2021, 40(7): 99-103.
Zhong L, Qian J P, Cai Q Z, Wang M, Zhang H Y, Yang Q, Luo B. Study on biological characteristics and viability of Cinnamomum cassia seeds. Seed, 2021, 40(7): 99-103. (in Chinese with English abstract)
[47] Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice, 2019, 12: 76.
doi: 10.1186/s12284-019-0334-6
[48] 马丽.梭梭再生体系研究及HaDREB2C基因的克隆与分析. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2017.
Ma L. Cloning and Analyzing of HaDREB2C and the Establishing on Regeneration System of Haloxylon. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2017. (in Chinese with English abstract)
[49] Caroline S, Aleksandra W, Florina V, Christiane V, Jeffrey L. Guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot, 2009, 60: 1439-1463.
doi: 10.1093/jxb/ern340
[50] Zhang W D, Wang P, Bao Z L, Ma Q, Duan L J, Bao A K, Zhang J L, Wang S M.SOS1, HKT1, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci, 2017, 8: 576.
[51] Pan Y, Seymour G B, Lu C, Hu Z, Chen X, Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep, 2012, 31: 349-360.
doi: 10.1007/s00299-011-1170-3 pmid: 22038370
[52] 关扬扬, 郑淑心, 刘向阳, 王召军, 张洪映, 崔红, 闫筱筱. NtCycB2基因表达对烟草抗旱性的影响. 烟草科技, 2021, 54(3): 1-8.
Guan Y Y, Zheng S X, Liu X Y, Wang Z J, Zhang H Y, Cui H, Yan X X. Effect of NtCycB2 gene expression on drought resistance of tobacco. Tobacco Sci Technol, 2021, 54(3): 1-8. (in Chinese with English abstract)
[1] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[2] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[3] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[4] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[5] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[6] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[7] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[8] DING Min, DUAN Zheng-Yong, WANG Yu-Zhuo, XUE Ya-Peng, WANG Hai-Gang, CHEN Ling, WANG Rui-Yun, QIAO Zhi-Jun. Development and validation of functional markers of GBSSI gene in proso millet [J]. Acta Agronomica Sinica, 2023, 49(3): 703-718.
[9] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[10] CHEN Bing-Ru, YU Miao, GE Zhan-Yu, LI Hong-Kui, HUANG Yan, LI Hai-Qing, SHI Gui-Shan, XIE Li, XU Ning, YAN Feng, GAO Shi-Jie, ZHOU Zi-Yang, WANG Nai. Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area [J]. Acta Agronomica Sinica, 2023, 49(2): 343-353.
[11] LI Xiu, LI Liu-Long, LI Mu-Rong, YIN Li-Jun, WANG Xiao-Yan. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(1): 286-294.
[12] ZHANG Cheng, ZHANG Zhan, YANG Jia-Bao, MENG Wan-Qiu, ZENG Ling-Lu, SUN Li. Genome-wide identification and relative expression analysis of DGATs gene family in sunflower [J]. Acta Agronomica Sinica, 2023, 49(1): 73-85.
[13] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[14] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[15] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .