Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2160-2170.doi: 10.3724/SP.J.1006.2023.24190
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen(), WAN Yong-Shan()
[1] |
Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
doi: 10.1016/j.fcr.2011.02.010 |
[2] | 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26. |
Yang Y, Feng J, Wu C Y. Problems facing peanut production in China and suggestions on mechanization measures. Agric Mach Technol Extens, 2021, (11): 24-26. (in Chinese) | |
[3] | 李振动.花生荚果及种子大小相关性状的QTL分析。中国农业科学院硕士学位论文, 北京, 2015. |
Li Z D. QTL Analysis for Pod and Seed Traits in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[4] |
Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26.
doi: 10.1186/1471-2229-12-26 pmid: 22340522 |
[5] | 成良强.花生遗传图谱构建及产量相关性状的QTL分析中国农业科学院硕士学位论文, 北京, 2014. |
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract) | |
[6] |
Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315 |
[7] | 曾新颖.花生荚果和籽仁大小相关性状QTL定位海南大学硕士学位论文, 海南海口, 2019. |
Zeng X Y. QTL Analysis of Pod and Kernel Size Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Hainan University, Haikou, Hainan, China, 2019. (in Chinese with English abstract) | |
[8] | 崔凤高, 胡晓辉, 苗华荣, 张胜忠, 王娟, 王嵩, 侯刚, 隋洁, 张建成, 陈静. 花生百果质量和百仁质量性状的QTL定位分析. 中国油料作物学报, 2021, 43: 1025-1030. |
Cui F G, Hu X H, Miao H R, Zhang S Z, Wang J, Wang S, Hou G, Sui J, Zhang J C, Chen J. QTL mapping for 100-pod and 100-seed weights in cultivated peanut. Chin J Oil Crop Sci, 2021, 43: 1025-1030. (in Chinese with English abstract) | |
[9] |
Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384.
doi: 10.1007/BF01184927 pmid: 24190266 |
[10] |
Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837.
doi: 10.1093/genetics/159.2.823 pmid: 11606556 |
[11] |
Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1-11.
pmid: 15729391 |
[12] |
Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018, 16: 1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729 |
[13] |
Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635 |
[14] |
Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J, Huai D, Lei Y, Jiang H, Yan L, Liao B. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus Infection in peanut. Front Plant Sci, 2021, 12: 745408.
doi: 10.3389/fpls.2021.745408 |
[15] |
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755 |
[16] |
Saito K, Yokoyama H, Noji M, Murakoshi I. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem, 1995, 270: 16321-16326.
doi: 10.1074/jbc.270.27.16321 pmid: 7608200 |
[17] |
Saito K, Kurosawa M, Murakoshi I. Determination of a functional lysine residue of a plant cysteine synthase by site-directed mutagenesis, and the molecular evolutionary implications. FEBS Lett, 1993, 328: 111-114.
pmid: 8344414 |
[18] |
Lal S K, Johnson S, Conway T, Kelley P M. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol, 1991, 16: 787-795.
pmid: 1859865 |
[19] |
Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853-859.
doi: 10.1016/S0969-2126(01)00220-9 pmid: 8535779 |
[20] |
Evans J C, Huddler D P, Jiracek J, Castro C, Millian N S, Garrow T A, Ludwig M L. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure, 2002, 10: 1159-1171.
pmid: 12220488 |
[21] | 高弘扬, 周良云, 罗碧, 许丹芸, 杨全. 乙烯信号转导及其在植物逆境响应中的作用. 江苏农业科学, 2020, 48(12): 15-19. |
Gao H Y, Zhou L Y, Luo B, Xu D Y, Yang Q. Ethylene signal transduction and its role in plant stress response. Jiangsu Agric Sci, 2020, 48(12): 15-19. (in Chinese) | |
[22] |
Hayashi H. Pyridoxal enzymes: mechanistic diversity and uniformity. J Biochem, 1995, 118: 463-473.
pmid: 8690703 |
[23] |
Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009, 5: 1797-1808.
doi: 10.1039/b907669g pmid: 19734957 |
[24] |
He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol, 2000, 12: 346-350.
pmid: 10801455 |
[25] |
Koonin E V. Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF-2B subunits revealed by analysis of conserved sequence motifs. Protein Sci, 1995, 4: 1608-1617.
pmid: 8520487 |
[26] | 殷冬梅, 李拴柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212-216. |
Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212-216. (in Chinese with English abstract) | |
[27] | 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农学通报, 2013, 19(16): 22-24. |
Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agric Sci Bull, 2013, 19(16): 22-24. (in Chinese with English abstract) | |
[28] |
Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273 |
[29] |
Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor Appl Genet, 2022, 135: 1779-1795.
doi: 10.1007/s00122-022-04069-0 pmid: 35262768 |
[30] |
Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: S1369-5266(16)30083-8 pmid: 27294659 |
[31] |
Li N, Xu R, Duan P, Li Y. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952 |
[32] |
Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7 |
[33] |
Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). Crop J, 2022, 10: 820-829.
doi: 10.1016/j.cj.2021.09.003 |
[1] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[2] | HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504. |
[3] | WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461. |
[4] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[5] | WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087. |
[6] | HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104. |
[7] | WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859. |
[8] | TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230. |
[9] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[10] | JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876. |
[11] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[12] | LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471. |
[13] | ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248. |
[14] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[15] | ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195. |
|