Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2196-2209.doi: 10.3724/SP.J.1006.2023.21054

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule

YANG Xiao-Hui(), WANG Bi-Sheng(), SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao()   

  1. College of Agriculture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2022-08-08 Accepted:2023-02-21 Online:2023-08-12 Published:2023-03-03
  • Contact: WANG Bi-Sheng,FANG Quan-Xiao E-mail:yangxiaohui0529@163.com;fqx01@163.com;wangbisheng2@126.com
  • Supported by:
    National Natural Science Foundation of China(31671627);Youth Program of Shandong Provincial Natural Science Foundation(ZR2021QC113);Qingdao Agricultural University Doctoral Start-up Fund(6631120069)

Abstract:

Combining drip irrigation and water-saving irrigation can increase crop use efficiency greatly, however, few studies investigated water-saving irrigation schedule for winter wheat under drip irrigation conditions. Using crop models to optimize water-saving irrigation systems can make up for the shortcomings of field trials, which can provide the guideline for precise irrigation. In this study, we evaluated the adaptability of the Root Zone Water Quality Model and Crop Estimation through Resource and Environment Synthesis (RZWQM-CERES) using the data from a three-year experiment with drip irrigation water conservation for winter wheat at Jiaodong area. Then we evaluated the influences of different water-saving drip irrigation schedules on winter wheat yield and water use efficiency. The results showed that RZWQM-CERES could effectively simulate the responses of soil moisture, winter wheat growth, and yield to different irrigation treatments and seasons. Root mean square error (RMSE), relative root mean square error (NRMSE), and coefficient of determination (R2) for the simulated soil water storage in 0-90 cm layer were 22.7-32.3 mm, 11.9%-16.3%, and 0.52-0.69, respectively. RMSE, NRMSE, and R2 values for simulated harvest above-ground biomass were 1184-1904 kg hm-2, 9.9%-16.8%, and 0.67, respectively. The corresponding values for simulated grain yield were 361-491 kg hm-2, 5.7%-7.8%, and 0.75, respectively. The long-term simulation results revealed that the critical water requirement period of winter wheat in this region was the booting period (in wet years and normal years) or the jointing period (in dry years). According to the different responses of winter wheat yield and water use efficiency to irrigation amounts and timings among the different rainfall patterns, the recommended optimal drip irrigation regimes for winter wheat at this region were 45 mm irrigation at both jointing and flowering stages in wet years, and 35 mm (or 45 mm) irrigations at the jointing, booting, and flowering stages in normal years (or dry years). These simulation results extended RZWQM-CERES to optimize drip irrigation schedule of winter wheat and provided an important technical support for the implementation of precise irrigation for winter wheat in the region.

Key words: winter wheat, water stress, drip irrigation, irrigation schedule, RZWQM-CERES, crop yield, water use efficiency

Fig. 1

Daily minimum (Tmin) and maximum (Tmax) air temperature, solar radiation, and rainfall during winter wheat growing seasons in 2016-2019"

Table 1

Calibrated soil hydraulics parameters at the Jiaozhou Experimental Station"

层次
Soil layer
(cm)
类型
Soil type
容重
Bulk density
(g cm-3)
饱和导水率
Saturated hydraulic conductivity
(cm h-1)
田间持水量
Field water capacity at 33 kPa
(cm3 cm-3)
0-3 壤质沙土 Loamy sand 1.49 1.94 (1.52-3.36) 0.20 (0.15-0.32)
3-18 壤土 Loam 1.42 1.52 (1.24-2.98) 0.25 (0.15-0.30)
18-55 粉质壤土 Silty loam 1.42 1.52 (1.28-2.75) 0.29 (0.18-0.35)
55-100 黏质壤土 Clay loam 1.42 1.25 (0.85-2.15) 0.28 (0.20-0.35)
100-150 粉质黏壤土 Silty clay loam 1.32 0.39 (0.14-1.35) 0.31 (0.25-0.35)
150-200 粉质黏壤土 Silty clay loam 1.42 0.19 (0.12-0.44) 0.33 (0.25-0.40)

Table 2

Calibrated crop cultivar parameters of winter wheat in the RZWQM-CERES model"

作物参数
Crop parameter
参数值
Parameter value
校正范围
Value
range
春化作用特性参数 P1V (d) 30 25-60
光周期特性参数 P1D (%) 30 20-50
灌浆期特性参数 P5 (℃ d) 560 400-650
籽粒数特性参数 G1 (gain g-1) 28 20-45
潜在灌浆速率参数 G2 (mg d-1) 30 20-45
花期潜在单茎穗重参数 G3 (g) 1.3 0.5-2.5
出叶间隔特性参数 PHINT (℃) 80 70-90

Fig. 2

Comparison of RZWQM-CERES simulated and measured soil water storage (mm) in 0-90 cm depth under different irrigation treatments in 2016-2019"

Table 3

Comparison of RZWQM-CERES simulated and measured soil water storage (0-90 cm), harvest biomass, yield, and evapotranspiration (ET) under different irrigation treatments in 2016-2019"

项目
Item
处理
Treatment
观测值
Measured
模拟值
Simulated
相对误差
MRE (%)
决定系数
R2
均方根
误差
RMSE
相对均方根
误差
NRMSE (%)
模型有效系数
E
模型校正结果 Calibration results (CK)
土壤贮水量
Soil water storage (mm)
CK 195.93±5.73 199.83±5.41 9.6 0.65 23.36 11.9 0.56
开花期
Flowering stage (day of year)
CK 128.33±1.40 130.33±1.15 1.6 0.99 2.16 1.7
成熟期
Maturity stage (day of year)
CK 159.33±1.50 157.67±1.45 1.0 0.99 1.73 1.1
生物量
Biomass (Mg hm-2)
CK 11.33±1.37 12.69±1.53 14.8 0.83 1.90 16.8
产量
Yield (Mg hm-2)
CK 6.32±1.37 6.59±1.41 4.2 0.99 0.36 5.7
农田蒸散
ET_m2 (mm)
CK 442.41±33.54 427.07±29.78 5.6 0.84 24.47 5.5
模型验证结果 Validation results (T1, T2, T3, T4)
土壤贮水量
Soil water strong (mm)
T1 187.32±5.49 189.74±5.54 10.5 0.69 22.73 12.3 0.55
T2 186.45±5.66 197.18±5.28 15.1 0.69 30.35 16.3 0.24
T3 193.39±5.59 197.52±5.17 13.5 0.52 29.60 15.3 0.26
T4 190.80±5.08 204.67±4.87 15.3 0.54 32.31 15.2 0.27
开花期
Flowering stage (day of year)
T1-T4 127.33±0.62 131.00±0.49 2.9 0.99 3.70 2.9 0.13
成熟期
Maturity stage (day of year)
T1-T4 160.00±0.89 157.67±0.62 1.4 0.98 2.52 1.6 0.27
生物量
Biomass (Mg hm-2)
T1-T4 11.98±1.53 12.66±1.02 8.6 0.67 1.18 9.9 0.36
产量
Yield (Mg hm-2)
T1-T4 6.34±0.88 6.13±0.68 6.3 0.75 0.49 7.8 0.69
农田蒸散
ET_m2 (mm)
T1-T4 410.63±23.89 416.21±31.54 6.6 0.67 29.64 7.2 0.40

Fig. 3

Comparison of RZWQM-CERES simulated and measured aboveground biomass under different irrigation treatments in 2016-2019Abbreviations are the same as those given in Table 3."

Fig. 4

Comparison between RZWQM-CERES simulated and measured above-ground biomass at harvest and grain yield under different irrigation treatments in 2016-2019 Abbreviations are the same as those given in Table 3."

Fig. 5

Comparison of RZWQM-CERES simulated evapotranspiration (ET_S) and estimated ET without (ET_m1) or with (ET_m2) the supplement from groundwater (Eq. 1) in 2016-2019 Abbreviations are the same as those given in Table 3."

Fig. 6

Response of RZWQM-CERES simulated wheat yield to irrigation times and amounts under the different precipitation patterns In the sub-figures, letters “a” refers to wet year, “b” refers to normal year, and “c” refers to dry year; and numbers of 1 means irrigation once, 2 means irrigation twice, 3 means irrigation three times, 4 means irrigation four times, and 5 means irrigation five times. In the irrigation treatments, Rainfed means rainfed, T means the irrigation at the turning green stage, J means the irrigation at the jointing stage, B means the irrigation at the booting stage, F means the irrigation at the flowering stage, and G means the irrigation at the filling stage."

Fig. 7

Response of RZWQM-CERES simulated water use efficiency (WUE) to irrigation times and amounts under the different precipitation patterns In the sub-figures, letters “a” refers to wet year, “b” refers to normal year, and “c” refers to dry year; and numbers of 1 means irrigation once, 2 means irrigation twice, 3 means irrigation three times, 4 means irrigation four times, and 5 means irrigation five times. In the irrigation treatments, Rainfed means rainfed, T means the irrigation at the turning green stage, J means the irrigation at the jointing stage, B means the irrigation at the booting stage, F means the irrigation at the flowering stage, and G means the irrigation at the filling stage."

Fig. 8

Winter wheat yield and water use efficiency (WUE) under the optimal irrigation schedules Treatments are the same as those given in Fig. 6."

[13] Liu Y, Li Y F, Li J S, Yan H J. Effects of mulched drip irrigation on water and heat conditions in field and maize yield in sub-humid region of northeast China. Trans CSAM, 2015, 46(10): 93-104. (in Chinese with English abstract)
[14] 李楠楠, 马卉, 王秀媛, 李军宏, 韩焕勇, 罗宏海. 滴灌定额对棉花株型、产量及纤维品质的影响. 干旱地区农业研究, 2019, 37(5): 16-21.
Li N N, Ma H, Wang X Y, Li J H, Han H Y, Luo H H. Effects of drip irrigation quota on plant shape, yield and fiber quality of cotton. Agric Res Arid Areas, 2019, 37(5): 16-21. (in Chinese with English abstract)
[15] 王志军, 王碧胜, 孙筱璐, 徐梦杰, 杨晓慧, 侯靳锦, 房全孝. 胶东半湿润区滴灌制度对冬小麦农田土壤水分、作物生长及水分利用的影响. 中国农学通报, 2021, 37(27): 6-15.
doi: 10.11924/j.issn.1000-6850.casb2021-0360
Wang Z J, Wang B S, Sun X L, Xu M J, Yang X H, Hou J J, Fang Q X. Effects of different drip irrigation schedules on soil moisture, wheat growth and water use at Jiaodong Semi-humid Region. Chin Agric Sci Bull, 2021, 37(27): 6-15. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-0360
[16] Yang M D, Leghari S J, Guan X K, Ma S C, Ding C M, Mei F J, Wei L, Wang T C. Deficit subsurface drip irrigation improves water use efficiency and stabilizes yield by enhancing subsoil water extraction in winter wheat. Front Plant Sci, 2020, 11: 508-508.
doi: 10.3389/fpls.2020.00508
[17] Zhang H H, Ma L W, Douglas-Mankin K R, Han M, Trout T J.Modeling maize production under growth stage-based deficit irrigation management with RZWQM2. Agric Water Manag, 2021, 248: 106767.
doi: 10.1016/j.agwat.2021.106767
[18] Sima M W, Fang Q X, Qi Z, Yu Q. Direct assimilation of measured soil water content in Root Zone Water Quality Model calibration for deficit-irrigated maize. Agron J, 2020, 112: 844-860.
doi: 10.1002/agj2.v112.2
[19] Ma L W, Trout T J, Ahuja L R, Bausch W C, Saseendran S A, Malone R W, Nielsen D C. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agric Water Manag, 2012, 103: 140-149.
doi: 10.1016/j.agwat.2011.11.005
[20] Fang Q X, Ma L W, Ahuja L R, Trout TJ, Malone R W, Zhang H H, Gui D W, Yu Q. Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA. Front Agric Sci Eng, 2017, 4: 172-184.
doi: 10.15302/J-FASE-2017139
[21] 夏文, 林涛, 褚晓升, 丁奠元, 颜安, 尔晨, 汤秋香. RZWQM2模型模拟地膜覆盖时间对棉田氮素迁移特征和氮肥利用效率的影响. 植物营养与肥料学报, 2022, 28: 114-126.
Xia W, Lin T, Chu X S, Ding D Y, Yan A, Er C, Tang Q X. Effects of mulching time on water use efficiency and yield of cotton in southern Xinjiang simulated by RZWQM2 model. J Plant Nutr Fert, 2022, 28: 114-126. (in Chinese with English abstract)
[22] Ma L, Hoogenboom G, Ahuja L R, Ascough J C, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agric Syst, 2006, 87: 274-295.
doi: 10.1016/j.agsy.2005.02.001
[23] 苑晶晶, 袁国富, 罗毅, 孙晓敏, 张娜. 利用δ18O信息分析冬小麦对浅埋深地下水的利用. 自然资源学报, 2009, 24: 360-368.
doi: 10.11849/zrzyxb.2009.02.022
Yuan J J, Yuan G F, Luo Y, Sunday X M, Zhang N. Estimation of groundwater use of winter wheat using H218O signatures: a preliminary study. J Nat Res, 2009, 24: 360-368. (in Chinese with English abstract)
[24] 房全孝. 根系水质模型中土壤与作物参数优化及其不确定性评价. 农业工程学报, 2012, 28(10): 118-123.
Fang Q X. Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model. Trans CSAE, 2012, 28(10): 118-123. (in Chinese with English abstract)
[25] Saseendran S A, Ahuja L R, Ma L, Nielsen D C, Trout T J.Enhancing the water stress factors for simulation of corn in RZWQM2. Agron J, 2014, 106(1): 81-94.
doi: 10.2134/agronj2013.0300
[26] Farahani H J, Ahuja L R. Evapotranspiration modeling of partial canopy/residue-covered fields. Trans Asae, 1996, 39: 2051-2064.
doi: 10.13031/2013.27708
[1] 李小涵, 武建军, 雷添杰, 周洪奎. 降水因素导致的水分亏缺对冬小麦产量影响的敏感期分析. 水利水电技术, 2020, 51(8): 209-217.
Li X H, Wu J J, Lei T J, Zhou H K. Analysis on the critical period of winter wheat yield impacted by water deficit caused by precipitation. Water Resour Hydr Eng, 2020, 51(8): 209-217. (in Chinese with English abstract)
[2] Fang Q X, Ma L, Yu Q, Ahuja L R, Malone R W, Hoogenboom G. Irrigation strategies to improve the water use efficiency of wheat- maize double cropping systems in North China Plain. Agric Water Manag, 2010, 97: 1165-1174.
doi: 10.1016/j.agwat.2009.02.012
[3] 李建民, 王璞, 周殿玺, 兰林旺. 灌溉制度对冬小麦耗水及产量的影响. 生态农业研究, 1999, (4): 25-28.
Li J, Wang P, Zhou D X, Lan L W. Effect of irrigation system on water consumption and yield of winter wheat. Ecol Agric Res, 1999, (4): 25-28. (in Chinese with English abstract)
[4] 张喜英. 华北典型区域农田蒸散与节水灌溉研究. 中国生态农业学报, 2018, 26: 1454-1464.
Zhang X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain. Chin J Eco-Agric, 2018, 26: 1454-1464. (in Chinese with English abstract)
[5] 付佳祥, 党红凯, 李晓爽, 柴春岭, 高惠嫣, 王晓玲, 刘宏权. 灌溉制度和品种对冬小麦产量性状和水分利用效率的影响. 中国农村水利水电, 2022, (6): 169-174.
Fu J X, Dang H K, Li X S, Chai C L, Gao H Y, Wang X L, Liu H Q. Effects of irrigation system and variety on yield characters and water use efficiency of winter wheat. Chin Rural Water Hydr, 2022, (6): 169-174. (in Chinese with English abstract)
[6] 呼红伟.不同氮肥条件下非充分灌溉对冬小麦生长、耗水及产量特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
[27] 李森, 魏红义, 武继承, 杨永辉, 丁晋利. 不同降水年型下免耕对冬小麦氮素积累与产量的影响. 农业机械学报, 2021, 52(6): 277-284.
Li S, Wei H Y, Wu J C, Yang Y H, Ding J L. Effects of no-tillage on nitrogen accumulation and yield of winter wheat under different precipitation patterns. Trans CSAM, 2021, 52(6): 277-284. (in Chinese with English abstract)
[28] Hu C, Saseendran S A, Green T R, Ma L W, Li X, Ahuja L. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zonwe J, 2006, 5: 493-505.
[29] 刘士平, 杨建锋, 李宝庆, 李运生. 新型蒸渗仪及其在农田水文过程研究中的应用. 水利学报, 2000, (3): 31-38.
Liu S P, Yang J F, Li B Q, Li Y S. A new large weighing lysimeter and its application to agro-hydrological process studies. J Hydraul Eng, 2000, (3): 31-38. (in Chinese with English abstract)
[30] 刘坤, 陈新平, 张福锁. 不同灌溉策略下冬小麦根系的分布与水分养分的空间有效性. 土壤学报, 2003, 40: 697-703.
Liu K, Chen X P, Zhang F S. Winter wheat root distribution and soil water and nutrient availability. Acta Pedol Sin, 2003, 40: 697-703. (in Chinese with English abstract)
[31] 张忠学, 于贵瑞. 不同灌水处理对冬小麦生长及水分利用效率的影响. 灌溉排水学报, 2003, (2): 1-4.
Zhang X Z, Yu G R. Effects of irrigation scheduling on development and water use efficiency in winter wheat. J Irrig Drain, 2003, (2): 1-4. (in Chinese with English abstract)
[32] 房全孝, 王建林, 于舜章. 华北平原小麦-玉米两熟制节水潜力与灌溉对策. 农业工程学报, 2011, 27(7): 37-44.
[6] Hu H W. Effect of Deficit Irrigation on Growth, Water Consumption And Yield characteristics of Winter Wheat under Different Nitrogen Fertilizer Conditions. MS Thesis of Northwest Agriculture and Forestry University, Yangling, Shaanxi, China, 2020. (in Chinese with English abstract)
[7] 宋同, 蔡焕杰, 徐家屯. 泾惠渠灌区冬小麦夏玉米连作需水量及灌水模式研究. 灌溉排水学报, 2017, 36(1): 52-56.
Song T, Cai H J, Xu J T. Water requirement and irrigation schedule of winter wheat and summer maize in Jinghuiqu irrigation district. J Irrig Drain, 2017, 36(1): 52-56. (in Chinese with English abstract)
[8] Guo D X, Olesen J E, Manevski K, Ma X. Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios. Agric Water Manag, 2021, 245: 106575.
doi: 10.1016/j.agwat.2020.106575
[9] 王文佳, 冯浩. 基于CROPWAT-DSSAT关中地区冬小麦需水规律及灌溉制度研究. 中国生态农业学报, 2012, 20: 795-802.
Wang W J, Feng H. Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model solution in Guanzhong District. Chin J Eco-Agric, 2012, 20: 795-802. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00795
[10] 房全孝, 于强, 王建林. 利用RZWQM-CERES模拟华北平原农田土壤水分动态及其对作物产量的影响. 作物学报, 2009, 35: 1122-1130.
Fang Q X, Yu Q, Wang J L. Simulating soil water dynamics and its effects on crop yield using RZWQM-CERES in the North China Plain. Acta Agron Sin, 2009, 35: 1122-1130. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01122
[11] Xu J T, Wang X Y, Ding Y B, Mu Q, Cai H J, Ma C G, Saddique Q. Effects of irrigation and nitrogen fertilization management on crop yields and long-term dynamic characteristics of water and nitrogen transport at deep soil depths. Soil Tillage Res, 2020, 198: 104536.
doi: 10.1016/j.still.2019.104536
[12] 李前, 秦裕波, 尹彩侠, 孔丽丽, 王蒙, 侯云鹏, 孙博, 赵胤凯, 徐晨, 刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响. 中国农业科学, 2022, 55: 1604-1616.
doi: 10.3864/j.issn.0578-1752.2022.08.011
Li Q, Qin Y B, Yin C X, Kong L L, Wang M, Hou Y P, Sun B, Zhao Y K, X C, Liu Z Q. Effect of drip fertigation mode on maize yield, nutrient uptake and economic benefit. Sci Agric Sin, 2022, 55: 1604-1616. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.08.011
[13] 刘洋, 栗岩峰, 李久生, 严海军. 东北半湿润区膜下滴灌对农田水热和玉米产量的影响. 农业机械学报, 2015, 46(10): 93-104.
[32] Fang Q X, Wang J L, Yu S Z. Water-saving potential and irrigation strategies for wheat-maize double cropping system in the North China Plain. Trans CSAE, 2011, 27(7): 37-44. (in Chinese with English abstract)
[33] 史源.灌水总量与灌溉技术约束下华北典型区域冬小麦灌溉制度优化研究. 中国水利水电科学研究院博士学位论文, 2019.
Shi Y.Study on the Optimized Irrigation Schedule of Winter Wheat in Typical Regions of North China under the Constraints of Irrigation Amount and Irrigation Technique. PhD Dissertation of China Institute of Water Resources and Hydropower Research, Beijing, China, 2019. (in Chinese with English abstract)
[34] Gu Z, Qi Z, Burghate R, Yuan S Q, Jiao X Y. Irrigation scheduling approaches and applications: a review. J Irrig Drain Eng, 2020, 146(6). doi: 10.1061/(ASCE)IR.1943-4774.0001464.
doi: 10.1061/(ASCE)IR.1943-4774.0001464.
[1] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[2] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[3] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[4] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[5] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[6] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[7] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[8] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[9] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[10] ZHAO Ying-Xing, WANG Biao, LIU Qing, SONG Tong, ZHANG Xue-Peng, CHEN Yuan-Quan, SUI Peng. Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain [J]. Acta Agronomica Sinica, 2022, 48(7): 1787-1779.
[11] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[12] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[13] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[14] ZHENG Yun-Pu, CHANG Zhi-Jie, HAN Yi, LU Yun-Ze, CHEN Wen-Na, TIAN Yin-Shuai, YIN Jia-Wei, HAO Li-Hua. Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat [J]. Acta Agronomica Sinica, 2022, 48(11): 2920-2933.
[15] YANG Heng-Shan, ZHANG Yu-Shan, GE Xuan-Liang, LI Wei-Min, GUO Zi-He, GUO Nuan. Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation [J]. Acta Agronomica Sinica, 2022, 48(10): 2614-2624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .