Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1158-1171.doi: 10.3724/SP.J.1006.2024.34110

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Developing and resistance assessing of phosphite-tolerant herbicide transgenic Brassica napus L.

ZHONG Yuan(), ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi*()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2023-07-03 Accepted:2023-10-23 Online:2024-05-12 Published:2023-12-13
  • Contact: E-mail: yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32072105)

Abstract:

During the production of Brassica napus, the yield and quality of the crop are seriously affected by a large number of accompanying weeds. Herbicide control options are rapidly diminishing due to the recent increase in the number of herbicide-resistant weeds in fields, which affects the sustainable development of agriculture in the future. Plants can take up phosphite (Phi) via orthophosphate (Pi) transporters, but the Phi cannot be metabolized and used as a phosphorus fertilizer for crops, resulting in plant growth inhibition. Previously, a ptxD gene isolated from Ralstonia sp. 4506, and the mutant protein ptxDQ at position 139, which had tyrosine mutation to glutamine (Y139Q), significantly improved the conversion activity of Phi to Pi. To evaluate the efficacy of ptxDQ/Phi-based weed control system in Brassica napus, we generated transgenic B. napus plants with a codon-optimized ptxD (Y139Q, ptxDQ) gene. Ectopic expression of ptxDQ confered the ability to convert Phi to Pi, resulting in improving plant growth in the presence of Phi. Pi-starvation-induced genes (e.g. PT21 and PT24) were suppressed in the ptxDQ transgenic lines by supplying Phi, indicating that ptxDQ can transform Phi into Pi in rapeseed. In addition, ptxDQ transgenic Brassica napus had a greater competitive growth advantage over wild-type Brassica napus and monocotyledonous weeds (Setaria glauca). In conclusion, the ptxDQ/Phi system provided an effective alternative for suppressing the weed growth while providing adequate Pi nutrition to the crops, which in turn improved the sustainability of agriculture.

Key words: Brassica napus, herbicide, phosphite, ptxDQ

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
Tm (℃) 产物扩增大小
Product length (bp)
Y139Q-M-Sal I-F TCCATCGATAGTACTGTCGACATGAAGCCTAAAGTTGTTTTGACTC 66 1050
Y139Q-M-Kpn I-R GCTCACCCCGGGAGCGGTACCAGCAGCTTTAACACCTGGG 75
ptxDQ-F ATGAAGCCTAAAGTTGTTTTGACTCAT 56 1009
ptxDQ-R AGCAGCTTTAACACCTGGGT 57
ptxDQ-DNA-F GTTTTGACTCATTGGGTTCATCCAGA 59 993
ptxDQ-DNA-R AGCAGCTTTAACACCTGGGT 58
ptxDQ-qRT-F CGATTCTGCTTTCCTTGAAGAGTG 59 216
ptxDQ-qRT-R CCAGATCTGATTTGTCTATCTCCCTC 59
BnACT7-RT-F CTATCCTCCGTCTCGATCTCGC 61.8 173
BnACT7-RT-R CTTAGCCGTCTCCAGCTCTTGC 63.2
RT-PCR PT21 F ATCGGCCGCAACAGGTAAGG 61.5 181
RT-PCR PT21 R AGGGACAAGGAAGGTGAAGAG 59.4
RT-PCR PT1;4-F GTACCGGCGGAGATCTTCCCAGC 65.4 324
RT-PCR PT1;4-R CTACACAATGGGGACCGTTC 61.2
RT-PCR PT24 F CCTGAAACTGCTCGTTACACC 58.8 109
RT-PCR PT24 R CCTCTGCTCTTTCCTCCATCTC 58.6
RT-PCR PHR F ACTGAGGCTCTGCGACTTCA 60.2 360
RT-PCR PHR R TCTTGTTCGGATTTGGATGGTGAAT 59.5

Fig. 1

Generation of transgenic B. napus harboring a codon-optimized ptxDQ (a): the growth of Brassica napus Westar treated with Pi and Phi at different concentrations for 7 days. Scale bar: 2 cm. (b): statistics of hypocotyl length after 7 days of growth. (c): statistics on root length after 7 days of growth. (d): Statistics on fresh weight after 7 days of growth. (e): Schematic diagram of the plant transformation vector p1300-ptxDQ. (f) and (g): 120 μg mL-1 hygromycin B and 0.5 mmol L-1 Pi + 1.5 mmol L-1 Phi were used as the screening agents for transformation. Scale bar: 2 cm. (h): PCR identification of RNA levels in Brassica napus seedlings. (i): the relative expression level of ptxDQ gene in Brassica napus regenerated seedlings. The numbers are different Brassica napus regenerated seedling monocots, M is marker, and BnaACT7 is Brassica napus internal gene. The significance is analyzed by t-test. *, **, and *** mean significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. S1

Hydroponics experiments of different ecotypes of Brassica napus under Pi and Phi (a) and (b) growth of different Brassica napus after 2 weeks of treatment. The Pi concentration is 1 mmol L-1 and the Phi concentration is 4 mmol L-1. Scale bar: 2 cm. (c) statistics of different Brassica napus root length after 2 weeks of treatment. (D) statistics of different Brassica napus fresh weight after 2 weeks of treatment. The significance is analyzed at P ≤ 0.05 by t-test. The values represented by the bars chart are significantly different if marked with different lowercase."

Fig. S2

Protein sequence analysis of ptxDQ Alignment of PtxDR4506, PtxDR4506 (Y139Q), and PtxDWM88 amino acid sequence. The identical residues were shaded by black, and the similar residues were shaded by gray."

Fig. S3

Callus regeneration with Hygromycin B or Phi selection on shoot initiation media (a) 120 μg mL-1 Hygromycin B and 1 mmol L-1 Phi were used as screening agents for transformation. Scale bar: 2 cm. (b) PCR identification of Brassica napus seedlings at DNA level. The numbers are different Brassica napus regenerated seedling monocots, M is marker. (c) RT- PCR analysis of roots, stems, and leaves of L10 strain of transgenic rapeseed. BnaACT7 is Brassica napus internal gene."

Table 2

Statistics of transformation of different screening agents in the same vector pCMBIA1300-PtxDQ"

筛选抗性
Resistance
实验重复Replicate 外植体数
Number of explants
愈伤数Number of calluses 外植体转化效率
Callus conversion rate (%)
再生苗数
Number of green seedlings
绿苗比例
Green seedling rate (%)
阳性转基因
株系比例
Transformation
efficiency (%)
Pi+ Phi 1 403 364 90.32 7 1.73 0
2 313 255 81.47 2 0.64 0
3 235 194 82.55 2 0.85 0
平均值Average 317 271 84.78 3.6 1.07 0
Hyg B 1 342 100 29.24 11 3.22 100
2 216 106 49.07 9 4.17 100
3 257 108 42.02 10 3.89 100
平均值Average 272 105 40.11 10 3.76 100

Fig. 2

Sand culture hydroponics study to evaluate the effect of Phi on the growth of Westar and ptxDQ transgenic B. napus plants (a)-(c): the image shows the Westar plants and two ptxDQ transgenic lines (L5 and L10, T1 generation) grown in sand culture (sand : vermiculite = 1:1) for 14-day (a), 56-day (b) and 76-day (c) by irrigating no P, Pi, or Phi nutrient solutions. In (a)-(c), the scale bar was 3, 7, and 7 cm, respectively. (d): bar graph shows the SPAD values of Westar and two ptxDQ transgenic lines irrigated by no P, Pi, or Phi nutrient solutions for two weeks. (e): bar graph shows the Pi contents of Westar and two ptxDQ transgenic lines irrigated by no P, Pi, or Phi nutrient solutions for two weeks. Different lowercase letter indicates significant difference at P ≤ 0.05 by t-test."

Fig. 3

Relative expression analysis of phosphorus starvation response genes in Brassica napus (a): the relative expression level of PHR; (b): the relative expression level of PT1:4; (c): the relative expression levels of PT21; (d): the relative expression of PT24. Different lowercase letter indicates significant difference at P ≤ 0.05 by t-test."

Fig. 4

ptxDQ/Phi suppresses weed growth in the field (a) and (b): growth and development of Westar, Setaria, and transgenic plants after 3 weeks of Pi and Phi treatment, Pi concentration was 1 mmol L-1, Phi concentration was 8 mmol L-1, (a) Scale bar: 5 cm; (b) Scale bar: 2 cm. (c): bar graph shows fresh weight of Setaria glauca representing in (a). The significance is analyzed by t-test: ***: P < 0.0001. (d): fresh weight, plant height, and root length of Westar and transgenic plants after 3 weeks of Pi and Phi treatment. (e): ptxDQ specific band in T1 transgenic lines by PCR.1-5, indicated different transgenic plants of L10. Different lowercase letter indicates significant difference at P ≤ 0.05 by t-test. "

[1] 李利霞, 陈碧云, 闫贵欣, 高桂珍, 许鲲, 谢婷, 张付贵, 伍晓明. 中国油菜种质资源研究利用策略与进展. 植物遗传资源学报, 2020, 21: 1-19.
doi: 10.13430/j.cnki.jpgr.20200109005
Li L X, Chen B Y, Yan G X, Gao G Z, Xu K, Xie T, Zhang F G, Wu X M. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China. J Plant Genet Resour, 2020, 21: 1-19 (in Chinese with English abstract).
[2] 敖礼林, 余增钢, 饶卫华. 油菜田杂草综合高效防控技术. 科学种养, 2019, (1): 39-40.
Ao L L, Yu Z G, Rao W H. Comprehensive and efficient prevention and control technology of weeds in rapeseed fields. Sci Breed, 2019, (1): 39-40 (in Chinese).
[3] de F Sousa M G, da Silva A C, Dos Santos Araújo R, Rigotto R M. Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil. Environ Monit Assess, 2019, 191: 604.
doi: 10.1007/s10661-019-7764-x pmid: 31485762
[4] Heap I, Duke S O. Overview of glyphosate-resistant weeds worldwide. Pest Manag Sci, 2018, 74: 1040-1049.
doi: 10.1002/ps.4760 pmid: 29024306
[5] Husken A, Dietz-Pfeilstetter A. Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res, 2007, 16: 557-569.
doi: 10.1007/s11248-007-9078-y
[6] Squire G R, Hawes C, Begg G S, Young M W. Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies. Environ Sci Pollut Res, 2009, 16: 85-94.
doi: 10.1007/s11356-008-0072-6
[7] Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants:from soil to cell. Plant Physiol, 1998, 116: 447-453.
doi: 10.1104/pp.116.2.447 pmid: 9490752
[8] Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ou-Yang Y, Zhang Q. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y pmid: 29487318
[9] Wang Y, Chen Y F, Wu W H. Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol, 2021, 63: 34-52.
doi: 10.1111/jipb.13053
[10] Bozzo G G, Singh V K, Plaxton W C. Phosphate or phosphite addition promotes the proteolytic turnover of phosphate- starvation inducible tomato purple acid phosphatase isozymes. FEBS Lett, 2004, 573: 51-54.
doi: 10.1016/j.febslet.2004.07.051 pmid: 15327974
[11] Eshraghi L, Anderson J P, Aryamanesh N, McComb J A, Shearer B, Hardy G S. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite- mediated resistance stimulates the auxin signalling pathway. BMC Plant Biol, 2014, 14: 68.
doi: 10.1186/1471-2229-14-68 pmid: 24649892
[12] Kariman K, Barker S J, Jost R, Finnegan P M, Tibbett M. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza, 2016, 26: 401-415.
doi: 10.1007/s00572-015-0674-z pmid: 26810895
[13] Burra D D, Berkowitz O, Hedley P E, Morris J, Resjo S, Levander F, Liljeroth E, Andreasson E, Alexandersson E. Phosphite- Induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol, 2014, 14: 254.
doi: 10.1186/s12870-014-0254-y
[14] Achary V M M, Ram B, Manna M, Datta D, Bhatt A, Reddy M K, Agrawal P K. Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnol J, 2017, 15: 1493-1508.
doi: 10.1111/pbi.12803 pmid: 28776914
[15] Danova-Alt R, Dijkema C, DE Waard P, Kock M. Transport and compartmentation of phosphite in higher plant cells: kinetic and 31P nuclear magnetic resonance studies. Plant Cell Environ, 2008, 31: 1510-1521.
doi: 10.1111/pce.2008.31.issue-10
[16] Thao H T B, Yamakawa T, Myint A K, Sarr P S. Effects of phosphite, a reduced form of phosphate, on the growth and phosphorus nutrition of spinach (Spinacia oleracea L.). Soil Sci Plant Nutr, 2008, 54: 761-768.
doi: 10.1111/j.1747-0765.2008.00290.x
[17] Dormatey R, Sun C, Ali K, Fiaz S, Xu D R, Calderon-Urrea A, Bi Z Z, Zhang J L, Bai J P. ptxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ, 2021, 9: e11809.
doi: 10.7717/peerj.11809
[18] Loera-Quezada M M, Leyva-Gonzalez M A, Lopez-Arredondo D, Herrera-Estrella L. Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae. Plant Sci, 2015, 231: 124-130.
doi: 10.1016/j.plantsci.2014.11.015 pmid: 25575997
[19] Pandeya D, Lopez-Arredondo D L, Janga M R, Campbell L M, Estrella-Hernandez P, Bagavathiannan M V, Herrera-Estrella L, Rathore K S. Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds. Proc Natl Acad Sci USA, 2018, 115: E6946-E6955.
[20] Costas A M, White A K, Metcalf W W. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem, 2001, 276: 17429-17436.
doi: 10.1074/jbc.M011764200 pmid: 11278981
[21] Changko S, Rajakumar P D, Young R E B, Purton S. The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl Microbiol Biotechnol, 2020, 104: 675-686.
doi: 10.1007/s00253-019-10258-7
[22] Lopez-Arredondo D L, Herrera-Estrella L. Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nat Biotechnol, 2012, 30: 889-893.
doi: 10.1038/nbt.2346
[23] Nahampun H N, Lopez-Arredondo D, Xu X, Herrera-Estrella L, Wang K. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation. Plant Cell Rep, 2016, 35: 1121-1132.
doi: 10.1007/s00299-016-1942-x
[24] Manna M, Achary M M, Islam T, Agrawal P K, Reddy M K. The development of a phosphite-mediated fertilization and weed control system for rice. Sci Rep, 2016, 6: 24941.
doi: 10.1038/srep24941 pmid: 27109389
[25] Lopez-Arredondo D L, Herrera-Estrella L. A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant Biotechnol J, 2013, 11: 516-525.
doi: 10.1111/pbi.2013.11.issue-4
[26] Pandeya D, Campbell L M, Nunes E, Lopez-Arredondo D L, Janga M R, Herrera-Estrella L, Rathore K S. ptxD gene in combination with phosphite serves as a highly effective selection system to generate transgenic cotton (Gossypium hirsutum L.). Plant Mol Biol, 2017, 95: 567-577.
doi: 10.1007/s11103-017-0670-0
[27] Liu T T, Yuan L L, Deng S R, Zhang X X, Cai H M, Ding G D, Xu F S, Shi L, Wu G B, Wang C. Improved the activity of phosphite dehydrogenase and its application in plant biotechnology. Front Bioeng Biotechnol, 2021, 9: 764188.
doi: 10.3389/fbioe.2021.764188
[28] Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L, Lu S. An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breed, 2020, 40: 96.
doi: 10.1007/s11032-020-01174-0
[29] Carswell C, Grant B R, Theodorou M E, Harris J, Niere J O, Plaxton W C. The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings. Plant Physiol, 1996, 110: 105-110.
pmid: 12226174
[30] Varadarajan D K, Karthikeyan A S, Matilda P D, Raghothama K G. Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol, 2002, 129: 1232-1240.
doi: 10.1104/pp.010835 pmid: 12114577
[31] Ren F, Guo Q Q, Chang L L, Chen L, Zhao C Z, Zhong H, Li X B. Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation. PLoS One, 2012, 7: e44005.
doi: 10.1371/journal.pone.0044005
[32] Ren F, Zhao C Z, Liu C S, Huang K L, Guo Q Q, Chang L L, Xiong H, Li X B. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis. Plant Mol Biol, 2014, 86: 595-607.
doi: 10.1007/s11103-014-0249-y
[33] Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. LoS One, 2019, 14: e220374.
[34] Buddenhagen C E, James T K, Ngow Z, Hackell D L, Rolston M P, Chynoweth R J, Gunnarsson M, Li F, Harrington K C, Ghanizadeh H. Resistance to post-emergent herbicides is becoming common for grass weeds on New Zealand wheat and barley farms. PLoS One, 2021, 16: e0258685.
doi: 10.1371/journal.pone.0258685
[35] Green J M, Siehl D L. History and outlook for glyphosate- resistant crops. Rev Environ Contam Toxicol, 2021, 255: 67-91.
[36] Holmes K H, Lindquist J L, Rebarber R, Werle R, Yerka M, Tenhumberg B. Modeling the evolution of herbicide resistance in weed species with a complex life cycle. Ecol Appl, 2022, 32: e02473.
doi: 10.1002/eap.v32.1
[37] Zabalza A, Orcaray L, Fernandez-Escalada M, Zulet-Gonzalez A, Royuela M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic Biochem Physiol, 2017, 141: 96-102.
doi: S0048-3575(16)30218-8 pmid: 28911748
[38] Wakelin A, Preston C. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res, 2006, 46: 432-440.
doi: 10.1111/wre.2006.46.issue-5
[39] Yu Q, Cairns A, Powles S. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta, 2007, 225: 499-513.
doi: 10.1007/s00425-006-0364-3
[40] Baerson S R, Rodriguez D J, Tran M, Feng Y, Biest N A, Dill G M. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol, 2002, 129: 1265-1275.
doi: 10.1104/pp.001560 pmid: 12114580
[41] Sammons R D, Gaines T A. Glyphosate resistance: state of knowledge. Pest Manag Sci, 2014, 70: 1367-1377.
pmid: 25180399
[42] Gaines T A, Zhang W, Wang D, Bukun B, Chisholm S T, Shaner D L, Nissen S J, Patzoldt W L, Tranel P J, Culpepper A S, Grey T L, Webster T M, Vencill W K, Sammons R D, Jiang J, Preston C, Leach J E, Westra P. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA, 2010, 107: 1029-1034.
doi: 10.1073/pnas.0906649107 pmid: 20018685
[43] Robertson I D, Dean L M, Rudebusch G E, Sottos N R, White S R, Moore J S. Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life. ACS Macro Lett, 2017, 6: 609-612.
doi: 10.1021/acsmacrolett.7b00270
[44] Mehta D, Ghahremani M, Perez-Fernandez M, Tan M, Schlapfer P, Plaxton W C, Uhrig R G. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Plant J, 021, 105: 924-941.
doi: 10.1111/tpj.v105.4
[45] Rima F B, da Silva Y, Teixeira M P R, Maia A J, Assis K G O, da Silva R, de Souza Junior V S, da Silva Y, Lopes J W B, Barbosa R S, Singh V P. Phosphorus in soils and fluvial sediments from a Cerrado biome watershed under agricultural expansion. Environ Monit Assess, 2022, 194: 388.
doi: 10.1007/s10661-022-09983-w pmid: 35445983
[46] Baammi S, Daoud R, El Allali A. Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations. J Biomol Struct Dyn, 2023, 41: 4154-4166.
doi: 10.1080/07391102.2022.2064912
[47] Gonzalez-Morales S I, Pacheco-Gutierrez N B, Ramirez- Rodriguez C A, Brito-Bello A A, Estrella-Hernandez P, Herrera-Estrella L, Lopez-Arredondo D L. Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds. Biotechnol Biofuels, 2020, 13: 119.
doi: 10.1186/s13068-020-01759-z
[48] Sandoval-Vargas J M, Jimenez-Clemente L A, Macedo-Osorio K S, Oliver-Salvador M C, Fernandez-Linares L C, Duran-Figueroa N V, Badillo-Corona J A. Use of the ptxD gene as a portable selectable marker for chloroplast transformation in Chlamydomonas reinhardtii. Mol Biotechnol, 2019, 61: 461-468.
doi: 10.1007/s12033-019-00177-3 pmid: 30997667
[49] Yuan H, Wang Y, Liu Y, Zhang M, Zou Z. A novel dominant selection system for plant transgenics based on phosphite metabolism catalyzed by bacterial alkaline phosphatase. PLoS One, 2021, 16: e0259600.
doi: 10.1371/journal.pone.0259600
[50] Chavana J, Singh S, Vazquez A, Christoffersen B, Racelis A, Kariyat R R. Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits. Sci Rep, 2021, 11: 6634.
doi: 10.1038/s41598-021-85789-z pmid: 33758235
[51] Garcia M J, Palma-Bautista C, Rojano-Delgado A M, Bracamonte E, Portugal J, Alcantara-de la Cruz R, De Prado R. The triple amino acid substitution TAP-IVS in the EPSPS gene confers high glyphosate resistance to the superweed Amaranthus hybridus. Int J Mol Sci, 2019, 20: 2396.
doi: 10.3390/ijms20102396
[52] Scarrow R. Glyphosate resistance: of superweeds and survivors. Nat Plants, 2017, 3: 17078.
doi: 10.1038/nplants.2017.78 pmid: 28504704
[1] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[2] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[3] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[4] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[5] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[6] TANG Yu-Feng, YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen. Genome-wide identification and functional analysis of SGR gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1829-1842.
[7] YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550.
[8] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[9] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[10] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[11] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
[12] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[13] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[14] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[15] LI Ji-Jun, CHEN Ya-Hui, WANG Yi-Jin, ZHOU Zhi-Hua, GUO Zi-Yue, ZHANG Jian, TU Jin-Xing, YAO Xuan, GUO Liang. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(12): 3162-3175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .