Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 334-346.doi: 10.3724/SP.J.1006.2025.32006

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional study of OgXa13 in Oryza meyeriana

ZHANG Zheng-Kang1(), SU Yan-Hong1(), RUAN Sun-Mei1, ZHANG Min1, ZHANG Pan1, ZHANG Hui2, ZENG Qian-Chun2, LUO Qiong1,*()   

  1. 1Yunnan State Key Laboratory of Biological Resources Conservation and Utilization, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2023-02-12 Accepted:2024-10-25 Online:2025-02-12 Published:2024-11-13
  • Contact: E-mail: qiongbf@aliyun.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    NSFC Yunnan United Fund(U2102219);NSFC Yunnan United Fund(U1302261)

Abstract:

Bacterial blight is one of the most devastating bacterial diseases in rice production. The identification and utilization of resistance genes in rice breeding is the most economical and effective method for controlling this disease. Oryza meyeriana represents a valuable genetic resource due to its high resistance, and even immunity, to bacterial blight. In this study, we cloned the full-length cDNA and an 8908 bp genomic sequence of OgXa13, a homolog of OsXa13, from Oryza meyeriana using transcriptome and genome sequencing. Sequence analysis revealed that the gene structure of OgXa13 consists of five exons and four introns, mirroring the structure of rice OsXa13, and its core promoter sequence is identical to that of the rice susceptibility gene OsXa13. A total of 21 amino acid differences were observed between OgXa13 and OsXa13, with four key substitutions located in the MtN3.1 domain. Overexpression of OgXa13 and its introduction into TP309 plants via genetic transformation significantly enhanced resistance to bacterial blight. It is hypothesized that the amino acid sequence differences contribute to the distinct functions of the OgXa13 and OsXa13 proteins, suggesting that OgXa13 could be utilized as a dominant resistance gene in rice breeding. Furthermore, knockout of the OsXa13 gene using CRISPR/Cas9 in Nipponbare T1 homozygous lines also significantly enhanced resistance to bacterial blight, demonstrating that editing the susceptibility gene OsXa13 through CRISPR/Cas9 is an effective strategy for improving resistance. This study provides a valuable genetic resource and new insights for breeding rice with enhanced resistance to bacterial blight.

Key words: rice, Oryza meyeriana, bacterial blight resistance, gene cloning, OgXa13

Fig. 1

Locations of the four gRNA target sites on the OsXa13 gene PAM: CRISPR/Cas identification of specific short DNA sequences, marked in red with PAM sequences."

Table 1

Oligo sequence"

Oligo名称
Oligo name
正向序列
Forward sequence (5′-3′)
反向互补序列
Reverse complementary sequence (5′-3′)
Oligo-Target1 TGTGTGTCACCCTCTCCGGTGTTGC AAACGCAACACCGGAGAGGGTGACA
Oligo-Target2 TGTGTGGGGTACAGCTCGGTGCCGT AAACACGGCACCGAGCTGTACCCCA
Oligo-Target3 TGTGTGCTACCTCGTCTACGCGCCG AAACCGGCGCGTAGACGAGGTAGCA
Oligo-Target4 TGTGTGAGCCGAGGAACACGGCCGT AAACACGGCCGTGTTCCTCGGCTCA

Table 2

Primers used for the detection of transgenic plants"

引物Primers 引物序列Primer sequences (5′-3′) 用途Purpose
HYG F: GCTTCTGCGGGCGATTTGTGT
R: GGTCGCGGAGGCTATGGATGC
潮霉素检测引物
Hygromycin detection primer
OgXa13-ox F: TAGTGGAAAAGGAAGGTGGCTCC
R: TGGGGACGAAGTAGAGCGTGAC
过表达阳性株系鉴定
Identification of positive overexpression lines
OgXa13 F: GGCAAGCTGCTCTAGCCAATAC
R: CAAGGGGAACAGCTAACAAGTGC
OgXa13基因阳性株系鉴定
Identification of transgenic OgXa13 gene-positive lines
Target1 F: GCTAGAGAGGAAGGCTTAAG
R: CAATGCAATGGTGCAGACAAC
靶点1测序引物
Target 1 sequencing primer
Target2/3 F: CATCATCTCCTTCCTGGTGTTCC
R: GACGGAGAGCCCGATCGGCATG
靶点2和靶点3测序引物
Target 2 and target 3 sequencing primers
Target4 F: CATGCCGATCGGGCTCTCCGTC
R: CACCACCTCGACCTTGTGCAC
靶点4测序引物
Target 4 sequencing primer

Fig. 2

Schematic diagram of gene structure of OgXa13 and OsXa13 A: schematic diagram of the gene structure of OgXa13; B: schematic diagram of the gene structure of OsXa13. Exons are represented by black boxes and introns by white boxes."

Fig. 3

Protein structure analysis of OgXa13 and OsXa13 A: a schematic representation of OgXa13 and OsXa13; the MtN3_slv domain are indicated by gray boxes; the thin black lines indicate the different amino acids and sites of OgXa13 and OsXa13 in the MtN3_slv domain; B: transmembrane prediction map of OgXa13 protein; C: transmembrane prediction map of OsXa13 protein."

Fig. 4

Bacterial blight resistance of TP309 plants overexpressing OgXa13 A: the leaf disease symptoms 14 days after inoculation of OgXa13 positive transgenic plants with leaf blight bacterium PXO99; B: identification of positive transgenic plants with gene-specific primers; C: spot length 14 days after inoculation of OgXa13 positive transgenic plants with bacterial pathogen PXO99; D: percentage of spot length to total leaf length at 14 days after inoculation of OgXa13 positive transgenic plants lines with PXO99; E: OgXa13 expression levels in leaves of positive transgenic T1 generation homozygous plants. *, P > 0.05; **, P < 0.01."

Fig. 5

Bacterial blight resistance of OgXa13 genes transgenic rice plants A: the leaf disease symptoms 14 days after inoculation of positive transgenic plants with leaf blight bacterium PXO99; B: identification of positive transgenic plants with gene-specific primers; C: expression levels of OgXa13 in leaves of positive transgenic T1 generation homozygous plants inoculated with PXO99 for 0 h and 48 h; D: percentage of spot length to total leaf length at 14 days after inoculation of positive transgenic plants lines with PXO99; E: spot length 14 days after inoculation of positive transgenic plants with bacterial pathogen PXO99. *, P > 0.05; **, P < 0.01."

Fig. 6

Bacterial blight resistance of OgXa13 genomic genes transgenic T2 generation rice plants A: the leaf disease symptoms 21 days after inoculation of T2 positive transgenic plants with leaf blight bacterium PXO99; B: identification of positive transgenic plants with gene-specific primers; C: spot length 21 days after inoculation of T2 positive transgenic plants with bacterial pathogen PXO99; D: percentage of spot length to total leaf length at 21 days after inoculation of T2 positive transgenic plants lines with PXO99; E: T2 generation transgenic homozygous plants were inoculated with the Amount of bacterial on 21 days. *, P > 0.05; **, P < 0.01."

Fig. 7

Bacterial blight resistance in CRISPR/Cas9 knockout lines of OsXa13 A: alignment of nucleic acid and amino acid sequences of mutant sites between Nipponbare and T1 knock out lines; B: spot length 14 days after inoculation of Nipponbare and three homozygous knockout lines with PXO99; C: spot length 14 days after inoculation of Nipponbare and three homozygous knockout lines with PXO99; D: percentage of spot length to total leaf length at 14 days after inoculation of Nipponbare and three homozygous knock out lines with PXO99. Nip: Nipponbare; Xa13-KO: knock out lines. *, P > 0.05; * *, P < 0.01."

[1] Elert E. Rice by the numbers: a good grain. Nature, 2014, 514: S50-S51.
[2] Mew T W. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359-382.
[3] Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7: 303-324.
doi: 10.1111/j.1364-3703.2006.00344.x pmid: 20507449
[4] 冯爱卿, 陈深, 汪聪颖, 陈凯玲, 封金奇, 杨健源, 曾列先, 朱小源. 7种杀菌剂对水稻白叶枯病防效评价. 植物保护, 2020, 46(4): 282-286.
Feng A Q, Chen S, Wang C Y, Chen K L, Feng J Q, Yang J Y, Zeng L X, Zhu X Y. Evaluation on the control efficacy of seven fungicides against rice bacterial blight. Plant Prot, 2020, 46(4): 282-286 (in Chinese with English abstract).
[5] 中国农业科学院植物保护研究所. 中国农作物病虫害(第3版). 北京: 中国农业出版社, 2015. pp 32-36.
Institute of Plant Protection, Chinese Academy of Agricultural Sciences. Crop Diseases and Pests in China, 3rd edn. Beijing: China Agriculture Press, 2015. pp 32-36 (in Chinese).
[6] 翟文学, 朱立煌. 水稻白叶枯病抗性基因的研究与分子育种. 生物工程进展, 1999, (6): 9-15.
Zhai W X, Zhu L H. Rice bacterial blight resistance genes and their utilization in molecular breeding. Prog Biotechnol, 1999, (6): 9-15 (in Chinese with English abstract).
[7] 邓一文, 刘裕强, 王静, 陈学伟, 何祖华. 农作物抗病虫研究的战略思考. 中国科学: 生命科学, 2021, 51: 1435-1446.
Deng Y W, Liu Y Q, Wang J, Chen X W, He Z H. Strategic thinking and research on crop disease and pest resistance in China. Sci Sin Vitae, 2021, 51: 1435-1446 (in Chinese with English abstract).
[8] Korinsak S, Darwell C T, Wanchana S, Praphaisal L, Korinsak S, Thunnom B, Patarapuwadol S, Toojinda T. Identification of bacterial blight resistance loci in rice (Oryza sativa L.) against diverse Xoo Thai strains by genome-wide association study. Plants (Basel), 2021, 10: 518.
[9] Shu X Y, Wang A J, Jiang B, Jiang Y Q, Xiang X, Yi X Q, Li S C, Deng Q M, Wang S Q, Zhu J, Liang Y Y, Liu H N, Zou T, Wang L X, Li P, Zheng A P. Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.). BMC Plant Biol, 2021, 21: 255.
[10] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95: 1663-1668.
doi: 10.1073/pnas.95.4.1663 pmid: 9465073
[11] Ji C H, Ji Z Y, Liu B, Cheng H, Liu H, Liu S Z, Yang B, Chen G Y. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun, 2020, 1: 100087.
[12] Xiang Y, Cao Y L, Xu C G, Li X H, Wang S P. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet 2006, 113: 1347-1355.
doi: 10.1007/s00122-006-0388-x pmid: 16932879
[13] Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 683-687.
pmid: 12595998
[14] Blair M W, Garris A J, Iyer A S, Chapman B, Kresovich S, McCouch S R. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet, 2003, 107: 62-73.
[15] Chen X F, Liu P C, Mei L, He X L, Chen L, Liu H, Shen S R, Ji Z D, Zheng X X, Zhang Y C, Gao Z Y, Zeng D L, Qian Q, Ma B J. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun, 2021, 2: 100143.
[16] Gu K Y, Sangha J S, Li Y, Yin Z C. High-resolution genetic mapping of bacterial blight resistance gene Xa10. Theor Appl Genet, 2008, 116: 155-163.
[17] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
[18] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806.
doi: 10.1126/science.270.5243.1804 pmid: 8525370
[19] Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y, Zhang M W, Yang B, Liu Y G, Zhao K J. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015, 8: 290-302.
doi: 10.1016/j.molp.2014.10.010 pmid: 25616388
[20] Liu Q S, Yuan M, Zhou Y, Li X H, Xiao J H, Wang S P. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ, 2011, 34: 1958-1969.
[21] Gu K Y, Yang B, Tian D S, Wu L F, Wang D J, Sreekala C, Yang F, Chu Z Q, Wang G L, White F F, Yin Z C. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435: 1122-1125.
[22] Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J, 2015, 84: 694-703.
[23] 刘丙新, 季芝娟, 石建尧, 马良勇, 李西明, 杨长登. 水稻白叶枯病抗性基因的发掘及在育种中的应用. 中国稻米, 2010, 16(2): 10-15.
Liu B X, Ji Z J, Shi J Y, Ma L Y, Li X M, Yang C D. Discovery of resistance genes to bacterial blight and its application in rice breeding. China Rice, 2010, 16(2): 10-15 (in Chinese).
[24] Yang R, Li J, Zhang H, Yang F, Wu Z G, Zhuo X X, An X Y, Cheng Z Q, Zeng Q C, Luo Q. Transcriptome analysis and functional identification o. Xa13 and Pi-ta orthologs in Oryza granulata. Plant Genome 2018, 11: 1-15.
[25] Wu Z G, Fang D M, Yang R, Gao F, An X Y, Zhuo X X, Li Y F, Yi C D, Zhang T, Liang C Z, Cui P, Cheng Z K, Luo Q. De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Commun Biol, 2018, 1: 84.
[26] Yuan M, Chu Z H, Li X H, Xu C G, Wang S P. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell, 2010, 22: 3164-3176.
[27] 王慧娜, 初志战, 马兴亮, 李日清, 刘耀光. 高通量PCR模板植物基因组DNA制备方法. 作物学报, 2013, 39: 1200-1205.
doi: 10.3724/SP.J.1006.2013.01200
Wang H N, Chu Z Z, Ma X L, Li R Q, Liu Y G. A high through-put protocol of plant genomic DNA preparation for PCR. Acta Agron Sin, 2013, 39: 1200-1205 (in Chinese with English abstract).
[28] Nishimura A, Ashikari M, Lin S Y, Takashi T, Angeles E R, Yamamoto T, Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA, 2005, 102: 11940-11944.
doi: 10.1073/pnas.0504220102 pmid: 16091467
[29] Sun X L, Cao Y L, Yang Z F, Xu C G, Li X H, Wang S P, Zhang Q F. Xa26, a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37: 517-527.
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[31] Antony G, Zhou J H, Huang S, Li T, Liu B, White F, Yang B. Rice xa13recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010, 22: 3864-3876.
[32] Bertoldi M, Gonsalvi M, Contestabile R, Voltattorni C B. Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase. J Biol Chem, 2002, 277: 36357-36362.
doi: 10.1074/jbc.M204867200 pmid: 12118007
[33] Abraham N, Veillette A. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of autophosphorylation and myristylation. Mol Cell Biol, 1990, 10: 5197-5206.
doi: 10.1128/mcb.10.10.5197-5206.1990 pmid: 1697929
[34] Chu Z H, Yuan M, Yao J L, Ge X J, Yuan B, Xu C G, Li X H, Fu B Y, Li Z K, Bennetzen J L, Zhang Q F, Wang S P. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20: 1250-1255.
[35] Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, Wang S P, Lahaye T. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol, 2010, 187: 1048-1057.
[36] Nelson R J, Baraoidan M R, Cruz C M, Yap I V, Leach J E, Mew T W, Leung H. Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microbiol, 1994, 60: 3275-3283.
[37] Qian W, Ge S, Hong D Y. Genetic diversity in accessions of wild rice Oryza granulata from south and Southeast Asia. Genet Resour Crop Evol, 2006, 53: 197-204.
[38] 刘继梅, 程在全, 杨明挚, 吴成军, 王玲仙, 孙一丁, 黄兴奇. 云南3种野生稻中抗病基因同源序列的克隆及序列分析. 中国农业科学, 2003, 36: 273-280.
Liu J M, Cheng Z Q, Yang M Z, Wu C J, Wang L X, Sun Y D, Huang X Q. Cloning and sequence analysis of disease resistance gene analogues from three wild rice species in Yunnan. Sci Agric Sin, 2003, 36: 273-280 (in Chinese with English abstract).
[39] 钱君, 程在全, 杨明挚, 刘继梅, 吴成军, 黄兴奇. 云南野生稻中Xa21基因外显子II的分离及序列分析. 遗传, 2005, 27: 382-386.
Qian J, Cheng Z Q, Yang M Z, Liu J M, Wu C J, Huang X Q. Isolation and sequence analysis of the Xa21 gene exon II homologs from different species of wild rice in Yunnan. Hereditas (Beijing), 2005, 27: 382-386 (in Chinese with English abstract).
[40] Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2006, 112: 455-461.
[41] Yuan T, Li X H, Xiao J H, Wang S P. Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13. Mol Plant, 2011, 4: 300-309.
[42] Zhang G, Angeles E R, Abenes M L, Khush G S, Huang N. RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice. Theor Appl Genet, 1996, 93: 65-70.
doi: 10.1007/BF00225728 pmid: 24162200
[43] Yuan M, Zhao J W, Huang R Y, Li X H, Xiao J H, Wang S P. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
[44] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
[45] 玄元虎, 朱毅勇, 胡一兵. SWEET蛋白家族研究进展. 中国科学: 生命科学, 2014, 44: 676-684.
Xuan Y H, Zhu Y Y, Hu Y B. Research advances of the SWEET proteins family. Sci Sin Vitae, 2014, 44: 676-684 (in Chinese with English abstract).
[46] Yuan M, Wang S P. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[1] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[2] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[3] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 Japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[4] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[5] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[6] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[7] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[8] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
[9] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[10] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
[11] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[12] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[13] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[14] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[15] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[2] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[3] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[4] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[5] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[6] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[7] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[8] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[9] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .
[10] WANG Jia-Yu;FAN Shu-Xiu;XU Zheng-Jin;CHEN Wen-Fu. Filling Properties of Grains on Different Positions in a Panicle of Rice with Different Panicle Types[J]. Acta Agron Sin, 2007, 33(08): 1366 -1371 .