Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1558-1568.doi: 10.3724/SP.J.1006.2025.44166
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
WANG Qiong1, ZOU Dan-Xia1, CHEN Xing-Yun1, ZHANG Wei1, ZHANG Hong-Mei1, LIU Xiao-Qing1, JIA Qian-Ru1,WEI Li-Bin2,CUI Xiao-Yan1,CEHN Xin1,WANG Xue-Jun2,*, CEHN Hua-Tao1,*
[1] Almeida Sá A G, Moreno Y M F, Carciofi B A M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci Technol, 2020, 97: 170–184. [2] Garner W W, Allard H A. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Mon Wea Rev, 1920, 48: 415. [3] Fang C, Du H P, Wang L S, Liu B H, Kong F J. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genom, 2024, 51: 379–393. [4] Bernard R L. Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971, 11: 242–244. [5] Buzzell R I. Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol, 1971, 13: 703–707. [6] McBlain B A, Bernard R L. A new gene affecting the time of flowering and maturity in soybeans. J Hered, 1987, 78: 160–162. [7] Bonato E R, Vello N A. E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999, 22: 229–232. [8] Ray J D, Hinson K, Mankono J E B, Malo M F. Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995, 35: 1001–1006. [9] Cober E R, Voldeng H D. A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci, 2001, 41: 698–701. [10] Cober E R, Molnar S J, Charette M, Voldeng H D. A new locus for early maturity in soybean. Crop Sci, 2010, 50: 524–527. [11] Kong F J, Nan H Y, Cao D, Li Y, Wu F F, Wang J L, Lu S J, Yuan X H, Cober E R, Abe J, et al. A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci, 2014, 54: 2529–2535. [12] Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R. Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017, 130: 377–390. [13] Wang F F, Nan H Y, Chen L Y, Fang C, Zhang H Y, Su T, Li S C, Cheng Q, Dong L D, Liu B H, et al. A new dominant locus, E11, controls early flowering time and maturity in soybean. Mol Breed, 2019, 39: 70. [14] Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lyu S X, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109: E2155–E2164. [15] Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, et al. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1220–1231. [16] Sun H B, Jia Z, Cao D, Jiang B J, Wu C X, Hou W S, Liu Y K, Fei Z H, Zhao D Z, Han T F. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One, 2011, 6: e29238. [17] Nan H Y, Cao D, Zhang D Y, Li Y, Lu S J, Tang L L, Yuan X H, Liu B H, Kong F J. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One, 2014, 9: e97669. [18] Xia Z J, Zhai H, Zhang Y F, Wang Y Y, Wang L, Xu K, Wu H Y, Zhu J L, Jiao S, Wan Z, et al. QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. Sci China Life Sci, 2022, 65: 2472–2490. [19] Liu W, Jiang B J, Ma L M, Zhang S W, Zhai H, Xu X, Hou W S, Xia Z J, Wu C X, Sun S, et al. Functional diversification of flowering locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol, 2018, 217: 1335–1345. [20] Zhai H, Lyu S X, Liang S, Wu H Y, Zhang X Z, Liu B H, Kong F J, Yuan X H, Li J, Xia Z J. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS One, 2014, 9: e89030. [21] Xu M L, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B H, Yamada T, et al. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol, 2015, 168: 1735–1746. [22] Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics, 2008, 180: 995–1007. [23] Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, et al. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009, 182: 1251–1262. [24] Lin X Y, Dong L D, Tang Y, Li H Y, Cheng Q, Li H, Zhang T, Ma L X, Xiang H L, Chen L N, et al. Novel and multifaceted regulations of photoperiodic flowering by phytochrome A in soybean. Proc Natl Acad Sci USA, 2022, 119: e2208708119. [25] Dong L D, Fang C, Cheng Q, Su T, Kou K, Kong L P, Zhang C B, Li H Y, Hou Z H, Zhang Y H, et al. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun, 2021, 12: 5445 [26] Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Cheng Q, Chen L Y, Su T, Nan H Y, Zhang D, et al. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet, 2020, 52: 428–436. [27] Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011, 188: 395–407. [28] Dong L D, Hou Z H, Li H Y, Li Z B, Fang C, Kong L P, Li Y L, Du H, Li T, Wang L S, et al. Agronomical selection on loss-of-function of GIGANTEA simultaneously facilitates soybean salt tolerance and early maturity. J Integr Plant Biol, 2022, 64: 1866–1882. [29] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析. 作物学报, 2022, 48: 812–824. Xu X, Qin C, Zhao T, Liu B, Li H Y, Liu J. Function analysis of GmELF3s in regulating soybean flowering time and circadian rhythm. Acta Agron Sin, 2022, 48: 812–824(in Chinese with English abstract). [30] Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, et al. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017, 49: 773–779. [31] Fang X L, Han Y P, Liu M S, Jiang J C, Li X, Lian Q C, Xie X R, Huang Y A, Ma Q B, Nian H, et al. Modulation of evening complex activity enables north-to-south adaptation of soybean. Sci China Life Sci, 2021, 64: 179–195. [32] Bu T T, Lu S J, Wang K, Dong L D, Li S L, Xie Q G, Xu X D, Cheng Q, Chen L Y, Fang C, et al. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci USA, 2021, 118: e2010241118. [33] Jung C H, Wong C E, Singh M B, Bhalla P L. Comparative genomic analysis of soybean flowering genes. PLoS One, 2012, 7: e38250. [34] Lyu J, Cai Z D, Li Y H, Suo H C, Yi R, Zhang S, Nian H. The floral repressor GmFLC-like is involved in regulating flowering time mediated by low temperature in soybean. Int J Mol Sci, 2020, 21: 1322. [35] Zhang W, Xu W J, Zhang H M, Liu X Q, Cui X Y, Li S S, Song L, Zhu Y L, Chen X, Chen H T. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet, 2021, 134: 1329–1341. [36] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348–354. [37] Li M X, Yeung J M Y, Cherny S S, Sham P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 2012, 131: 747–756. [38] Dong S S, He W M, Ji J J, Zhang C, Guo Y, Yang T L. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform, 2021, 22: bbaa227. [39] Wang K, Li M Y, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38: e164. [40] Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci, 1997, 37: 370–378. [41] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067. [42] Patil G, Mian R, Vuong T, Pantalone V, Song Q J, Chen P Y, Shannon G J, Carter T C, Nguyen H T. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet, 2017, 130: 1975–1991. [43] Zhang H M, Zhang G W, Zhang W, Wang Q, Xu W J, Liu X Q, Cui X Y, Chen X, Chen H T. Identification of loci governing soybean seed protein content via genome-wide association study and selective signature analyses. Front Plant Sci, 2022, 13: 1045953. [44] Cober E R, Morrison M J. Regulation of seed yield and agronomic characters by photoperiod sensitivity and growth habit genes in soybean. Theor Appl Genet, 2010, 120: 1005–1012 [45] Fang C, Ma Y M, Wu S W, Liu Z, Wang Z, Yang R, Hu G H, Zhou Z K, Yu H, Zhang M, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol, 2017, 18: 161. [46] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408–414. [47] Wang C, Hao X S, Liu X Q, Su Y Z, Pan Y P, Zong C M, Wang W B, Xing G N, He J B, Gai J Y. An improved genome-wide association procedure explores gene-allele constitutions and evolutionary drives of growth period traits in the global soybean germplasm population. Int J Mol Sci, 2023, 24: 9570. [48] Wang Y, Gu Y Z, Gao H H, Qiu L J, Chang R Z, Chen S Y, He C Y. Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol Biol, 2016, 16: 79. [49] Guo S Y, Li Y F, Qiu H M, Hu G Y, Zhao C S, Wang R Z, Zhang H, Tian Y, Li X Y, Liu B, et al. GmAP1d regulates flowering time under long-day photoperiods in soybean. Crop J, 2024, 12: 845–855. [50] Cloix C, Kaiserli E, Heilmann M, Baxter K J, Brown B A, O’Hara A, Smith B O, Christie J M, Jenkins G I. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci USA, 2012, 109: 16366–16370. [51] Yamamoto Y Y, Deng X, Matsui M. Cip4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis photomorphogenesis. Plant Cell, 2001, 13: 399–411. [52] González Besteiro M A, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase-1 and its target MAP kinases-3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J, 2011, 68: 727–737. [53] Hori K, Watanabe Y. UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J, 2005, 43: 530–540. [54] Jeong H J, Kim Y J, Kim S H, Kim Y H, Lee I J, Kim Y K, Shin J S. Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. Plant Cell Physiol, 2011, 52: 2147–2156. [55] Shi C, Baldwin I T, Wu J Q. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J Integr Plant Biol, 2012, 54: 99–114. |
[1] | LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408. |
[2] | YIN Cong-Cong, LI Rui-Qi, YUE Pei-Yao, LI Chen, NIU Jing-Ping, ZHAO Jin-Zhong, DU Wei-Jun, YUE Ai-Qin. Establishment and application of a visual detection method for soybean mosaic virus SC15 based on closed dumbbell mediated isothermal amplification [J]. Acta Agronomica Sinica, 2025, 51(5): 1248-1260. |
[3] | XU Jian-Xia, DING Yan-Qing, CAO Ning, CHENG Bin, GAO Xu, LI Wen-Zhen, ZHANG Li-Yi. Genome-wide association analysis and prediction of candidate genes for plant height and internode number in Chinese sorghum [J]. Acta Agronomica Sinica, 2025, 51(3): 568-585. |
[4] | ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556. |
[5] | QIAN Yu-Ping, SU Bing-Bing, GAO Ji-Xing, RUAN Fen-Hua, LI Ya-Wei, MAO Lin-Chun. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region [J]. Acta Agronomica Sinica, 2025, 51(1): 273-284. |
[6] | LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57. |
[7] | DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173. |
[8] | NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266. |
[9] | SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186. |
[10] | LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130. |
[11] | LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709. |
[12] | ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235. |
[13] | MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103. |
[14] | WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819. |
[15] | HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602. |
|