Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1874-1886.doi: 10.3724/SP.J.1006.2025.53001

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration

DONG Wei-Jin1,2,ZHANG Ya-Feng1,2,LI Qi-Yun1,2,LU Yang2,ZHANG Zheng-Kun2,*,SUI Li2,*   

  1. 1 Jilin Agricultural University, Changchun 130118, Jilin, China; 2 Institute of Plant Protection, Jilin Academy of Agricultural Sciences / Jilin Provincial Key Laboratory of Agricultural Microbiology / Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun 136100, Jilin, China
  • Received:2025-01-02 Revised:2025-04-25 Accepted:2025-04-25 Online:2025-07-12 Published:2025-05-06
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (32271683) and the Agricultural Science and Technology Innovation Project of Jilin Province (CXGC2024JJ11, CXGC2024RCY017).

Abstract: As an entomopathogenic fungus, Beauveria bassiana has been shown to colonize host plants, where it not only promotes plant growth but also enhances resistance to both biotic and abiotic stresses. In the context of accelerating global industrialization, atmospheric CO2 concentrations are rising steadily, profoundly influencing plant growth, development, and physiological and biochemical processes. Moreover, elevated CO2 levels regulate complex interactions between plants and microorganisms at the microecological level. However, the impact of B. bassiana colonization on plant performance and grain quality under elevated CO2 conditions remains insufficiently understood. In this study, we investigated the effects of B. bassiana colonization on agronomic traits, dry matter accumulation, yield, and grain quality of maize (Zea mays) under two atmospheric CO2 concentrations: ambient (400?±?50) μmol mol?1 and elevated (600?±?50) μmol mol?1. The results revealed that B. bassiana-colonized maize exhibited significantly increased plant height, stem diameter, and biomass accumulation under both CO2 conditions. In terms of yield and grain quality, colonization also resulted in notable improvements. Furthermore, the beneficial effects of B. bassiana were more pronounced under elevated CO2, leading to accelerated growth rates and enhanced biomass and grain quality. In conclusion, B. bassiana colonization enhances the physiological adaptability and ecological stability of maize under elevated CO2 conditions. These findings provide new insights into plant-microbe interactions and offer promising strategies for advancing sustainable agricultural development in the face of climate change.

Key words: climate change, entomogenous fungi, endophytic colonization, yield composition, grain quality

[1] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46: 1819–1830.
Li Y S, Jin J, Liu X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agron Sin, 2020, 46: 1819–1830 (in Chinese with English abstract).

[2] Saleh A M, Abdel-Mawgoud M, Hassan A R, Habeeb T H, Yehia R S, AbdElgawad H. Global metabolic changes induced by arbuscular mycorrhizal fungi in oregano plants grown under ambient and elevated levels of atmospheric CO2. Plant Physiol Biochem, 2020, 151: 255–263.

[3] Smith F, Luna E. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits. Biochem J, 2023, 480: 1791–1804.

[4] Rasmussen P U, Bennett A E, Tack A J M. The impact of elevated temperature and drought on the ecology and evolution of plant-soil microbe interactions. J Ecol, 2020, 108: 337–352.

[5] Smith S E, Jakobsen I, Grønlund M, Andrew Smith F. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol, 2011, 156: 1050–1057.

[6] Phour M, Sindhu S S. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta, 2022, 256: 85.

[7] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展. 作物学报, 2022, 48: 1–14.
Jian S L, Li S X, Liu S Q, Li X N. Research advances of cover crops and their important roles. Acta Agron Sin, 2022, 48: 1–14 (in Chinese with English abstract).

[8] 隋丽, 路杨, 姜媛媛, 万婷玉, 徐文静, 张正坤, 李启云. 内生性虫生真菌在生物防治中的研究现状与展望. 玉米科学, 2021, 29(6): 169–174.
Sui L, Lu Y, Jiang Y Y, Wan T Y, Xu W J, Zhang Z K, Li Q Y. Advance and prospect of endophytic entomopathogenic fungi in biological control. J Maize Sci, 2021, 29(6): 169–174 (in Chinese with English abstract).

[9] Sui L, Lu Y, Zhou L Y, Li N N, Li Q Y, Zhang Z K. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Front Microbiol, 2023, 14: 1227269.

[10] 李芳, 张珏锋, 钟海英, 陈建明. 锌离子响应转录激活因子ZafA对球孢白僵菌锌离子利用及生防潜能的影响. 菌物学报, 2022, 41: 570–586.
Li F, Zhang J F, Zhong H Y, Chen J M. Effects of zinc-responsive transcriptional activator ZafA on zinc utilization and biocontrol potential of Beauveria bassiana. Mycosystema, 2022, 41: 570–586 (in Chinese with English abstract).

[11] González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J Pest Sci, 2019, 92: 1271–1281.

[12] Shrivastava G, Ownley B H, Augé R M, Toler H, Dee M, Vu A, Köllner T G, Chen F. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against an herbivorous insect. Symbiosis, 2015, 65: 65–74.

[13] Sui L, Zhu H, Wang D L, Zhang Z K, Bidochka M J, Barelli L, Lu Y, Li Q Y. Tripartite interactions of an endophytic entomopathogenic fungus, Asian corn borer, and host maize under elevated carbon dioxide. Pest Manag Sci, 2024, 80: 4575–4584.

[14] Gana L P, Etsassala N G E R, Nchu F. Interactive effects of water deficiency and endophytic Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant activity of Allium cepa L. J Fungi, 2022, 8: 874.

[15] 文欢, 张正坤, 李启云, 路杨, 隋丽. 大气CO2浓度升高下球孢白僵菌定殖对玉米植株生长及光合的影响. 生态学报, 2025, 45(2): 1–10.
Wen H, Zhang Z K, Li Q Y, Lu Y, Sui L. Effects of Beauteria bassiana colonization on the growth and photosythesis of maize plants under elevated CO2. Acta Ecol Sin, 2025, 45(2): 1–10 (in Chinese with English abstract).

[16] 费泓强, 隋丽, 朱慧, 徐文静, 陈日曌, 汪洋洲, 李启云, 王德利. 球孢白僵菌在玉米苗期的定殖及其对玉米生理生化特性的影响. 中国生物防治学报, 2016, 32: 721–727.
Fei H Q, Sui L, Zhu H, Xu W J, Chen R Z, Wang Y Z, Li Q Y, Wang D L. Colonization of Beauveria bassiana in maize seedlings and its effect on their physiological-biochemical characteristics. Chin J Biol control, 2016, 32: 721–727 (in Chinese with English abstract).

[17] 隋丽, 徐文静, 张正坤, 杨芷, 王志慧, 杜茜, 汪洋洲, 陈日曌, 李启云, 路杨. GFP标记的球孢白僵菌在玉米中的定殖. 中国生物防治学报, 2018, 34: 848–857.
Sui L, Xu W J, Zhang Z K, Yang Z, Wang Z H, Du Q, Wang Y Z, Chen R Z, Li Q Y, Lu Y. Colonization of GFP-tagged Beauveria bassiana in maize. Chin J Biol control 2018, 34: 848–857 (in Chinese with English abstract).

[18] Sui L, Zhu H, Xu W J, Guo Q F, Wang L, Zhang Z K, Li Q Y, Wang D L. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. Fungal Ecol, 2020, 47: 100940.

[19] 赵玉萍, 邹志荣, 白鹏威, 任雷, 李鹏飞. 不同温度对温室番茄生长发育及产量的影响. 西北农业学报, 2010, 19: 133–137.
Zhao Y P, Zou Z R, Bai P W, Ren L, Li P F. Effect of different temperature on the growth and yield of tomato in greenhouse. Acta Agric Boreali-Occident Sin, 2010, 19: 133–137 (in Chinese with English abstract).

[20] Fernandez J A, Nippert J B, Vara Prasad P V, Messina C D, Ciampitti I A. Post-silking 15N labelling reveals an enhanced nitrogen allocation to leaves in modern maize (Zea mays) genotypes. J Plant Physiol, 2022, 268: 153577.

[21] 司海丽, 纪立东, 刘菊莲, 柳骁桐, 郑淑欣. 有机肥施用量对玉米产量、土壤养分及生物活性的影响. 西南农业学报, 2022, 35: 740–747.
Si H L, Ji L D, Liu J L, Liu X T, Zheng S X. Effects of organic fertilizer application rate on maize yield, soil nutrients and biological activity. Southwest China J Agric Sci, 2022, 35: 740–747 (in Chinese with English abstract).

[22] 连晓荣, 何海军, 李永生, 周文期, 王晓娟, 杨彦忠, 刘忠祥, 张彦军, 周玉乾. 不同种植模式对玉米光合特性、产量及品质的影响. 干旱地区农业研究, 2024, 42(4): 167–177.
Lian X R, He H J, Li Y S, Zhou W Q, Wang X J, Yang Y Z, Liu Z X, Zhang Y J, Zhou Y Q. Effects of different planting patterns on photosynthesis characteristic, grain yield and quality of maize. Agric Res Arid Areas, 2024, 42(4): 167–177 (in Chinese with English abstract).

[23] 隋丽, 万婷玉, 路杨, 徐文静, 张正坤, 李启云. 内生真菌对植物促生、抗逆作用研究进展. 中国生物防治学报, 2021, 37: 1325–1331.
Sui L, Wan T Y, Lu Y, Xu W J, Zhang Z K, Li Q Y. Review of fungal endophytes on plant growth promotion and stress resistance. Chin J Biol Control, 2021, 37: 1325–1331 (in Chinese with English abstract).

[24] Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M. The entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana promote systemic immunity and confer resistance to a broad range of pests and pathogens in tomato. Phytopathology, 2022, 112: 784–793.

[25] Dash C K, Bamisile B S, Keppanan R, Qasim M, Lin Y W, Islam S U, Hussain M, Wang L D. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb Pathog, 2018, 125: 385–392.

[26] Macuphe N, Oguntibeju O O, Nchu F. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of lettuce (Lactuca sativa L.). Plants, 2021, 10: 1178.

[27] Chen J F, Liu Y, Tang G R, Jin D, Chen X, Pei Y, Fan Y H. The secondary metabolite regulator, BbSmr1, is a central regulator of conidiation via the BrlA-AbaA-WetA pathway in Beauveria bassiana. Environ Microbiol, 2021, 23: 810–825.

[28] Batool R, Umer M J, Zhang Y J, Guo J F, Wang Z Y. Phytol-induced interplant signaling in maize facilitates EXP-A20-driven resistance through ACO31-dependent ethylene accumulation against Ostrinia furnacalis. Plant J, 2025, 121: e17186.

[29] Abdelhameed R E, Soliman E R S, Gahin H, Metwally R A. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC Plant Biol, 2024, 24: 662.

[30] Amobonye A, Bhagwat P, Pandey A, Singh S, Pillai S. Biotechnological potential of Beauveria bassiana as a source of novel biocatalysts and metabolites. Crit Rev Biotechnol, 2020, 40: 1019–1034.

[31] Sánchez-Rodríguez A R, Del Campillo M C, Quesada-Moraga E. Beauveria bassiana: an entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Sci Hortic, 2015, 197: 193–202.

[32] Zou S P, Ma Y Z, Zhao L X, Chen X M, Gao H L, Chen J, Xue Y P, Zheng Y G. Revealing the regulatory impact of nutrient on the production of (R)-2-(4-Hydroxyphenoxy) propanoic acid by Beauveria bassiana biofilms through comparative transcriptomics analyse. Bioprocess Biosyst Eng, 2024, 47: 1803–1814.

[33] 李子正, 蔡廷阳, 李元鑫, 杨婧, 张蕾蕾, 燕志翔, 褚鹏飞, 孟维伟, 王旭清. 球孢白僵菌与哈茨木霉对玉米苗期促生抗逆的影响. 山东农业科学, 2023, 55(8): 39–47.
Li Z Z, Cai T Y, Li Y X, Yang J, Zhang L L, Yan Z X, Chu P F, Meng W W, Wang X Q. Effects of Beauveria bassiana and Trichoderma harzianum on growth promotion and stress resistance of maize seedlings. Shandong Agric Sci, 2023, 55(8): 39–47 (in Chinese with English abstract).

[34] 许绍欢, 许忠顺, 杜飞, 刘京, 萄剑渝, 邹晓. 混合接种球孢白僵菌与摩西球囊霉对烟草促生抗逆影响. 菌物学报, 2021, 40: 2191–2200.
Xu S H, Xu Z S, Du F, Liu J, Tao J Y, Zou X. Effects of mixed inoculation of Beauveria bassiana and Glomus mosseae on tobacco growth and stress resistance. Mycosystema, 2021, 40: 2191–2200 (in Chinese with English abstract).

[35] 况再银, 童文, 孙佩, 曾华兰, 叶鹏盛, 赵馨怡, 龙艳梅. 球孢白僵菌的侵染特性及应用研究进展. 微生物学通报, 2023, 50: 3187–3197.
Kuang Z Y, Tong W, Sun P, Zeng H L, Ye P S, Zhao X Y, Long Y M. Research progress in infection characteristics and application of Beauveria bassiana. Microbiol China, 2023, 50: 3187–3197 (in Chinese with English abstract).

[36] Tian W, Su C F, Zhang N, Zhao Y W, Tang L. Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration. Ecol Model, 2024, 495: 110805.

[37] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响. 作物学报, 2025, 51: 10611076.
Wang J, Bai H X, Han Y Y, Liang H, Feng Y N, Zhang D S, Li P, Zong Y Z, Shi X R, Hao X Y. Effects of elevated CO2 concentration, increased temperature and their interaction on the carbon and nitrogen metabolism in Liangxing 99 winter wheat leaves. Acta Agron Sin, 2025, 51: 10611076 (in Chinese with English abstract).

[38] 朱智远, 贾辰雁, 丁孝伟, 沈娇, 张萌, 张浩男, 韩烈保. CO2加富与不同光强对高羊茅幼苗生长的影响. 草业科学, 2024, 41: 2564–2575.
Zhu Z Y, Jia C Y, Ding X W, Shen J, Zhang M, Zhang H N, Han L B. Effects of CO2 enrichment and different light intensities on the growth of tall fescue seedlings. Pratac Sci, 2024, 41: 2564–2575 (in Chinese with English abstract).

[39] 邢红爽, 乌佳美, 陈健, 史作民. 植物光合作用限制因素与植被生产力研究进展. 生态学报, 2023, 43: 51865199.
Xing H S, Wu J M, Chen J, Shi Z M. Research progress on limiting factors of plant photosynthesis and vegetation productivity. Acta Ecol Sin, 2023, 43: 5186–5199 (in Chinese with English abstract).

[40] 张凯, 王润元, 王鹤龄, 赵鸿, 赵福年, 齐月, 陈斐, 杨阳, 雷俊. CO2浓度增加对半干旱区马铃薯生长动态及产量、品质的影响. 干旱地区农业研究, 2023, 41: 238–246.
Zhang K, Wang R Y, Wang H L, Zhao H, Zhao F N, Qi Y, Chen F, Yang Y, Lei J. Effects of elevated CO2 concentration on growth dynamics, yield and quality of potato in semi-arid area. Agric Res Arid Areas, 2023, 41: 238–246 (in Chinese with English abstract).

[41] 宗毓铮, 张函青, 李萍, 张东升, 林文, 薛建福, 高志强, 郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4984–4995.
Zong Y Z, Zhang H Q, Li P, Zhang D S, Lin W, Xue J F, Gao Z Q, Hao X Y. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in north China. Sci Agric Sin, 2021, 54: 4984–4995 (in Chinese with English abstract).

[42] 杨爱峥, 李志磊, 付强, 李全峰, 贺昕瑶. CO2浓度倍增和土壤盐胁迫对藜麦生理特征及产量的影响. 农业工程学报, 2021, 37: 181–187.

Yang A Z, Li Z L, Fu Q, Li Q F, He X Y. Effects of elevated atmospheric CO2 on physiological characteristics and yield of quinoa to salinity stress. Trans CSAE, 2021, 37: 181–187 (in Chinese with English abstract).

[43] 宋春燕, 万运帆, 李玉娥, 蔡岸冬, 胡严炎, 周慧, 朱波, 王斌. 温度和CO2浓度升高下双季稻茎蘖动态、成穗率与产量的关系. 作物杂志, 2023, (3): 159–166.
Song C Y, Wan Y F, Li Y E, Cai A D, Hu Y Y, Zhou H, Zhu B, Wang B. Relationships among stem tiller dynamics, spike formation and yield of double-cropped rice under elevated temperature and CO2 concentration. Crops, 2023, (3): 159–166 (in Chinese with English abstract).

[44] Miyagi A, Uchimiya H, Kawai-Yamada M. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chem, 2017, 218: 561–568.

[45] 王春乙, 郭建平, 崔读昌, 王修兰, 梁红, 徐师华. CO2浓度增加对小麦和玉米品质影响的实验研究. 作物学报, 2000, 26: 931–936.
Wang C Y, Guo J P, Cui D C, Wang X L, Liang H, Xu S H. The experimental research about the effects of CO2 enrichment on wheat and corn quality. Acta Agron Sin, 2000, 26: 931–936 (in Chinese with English abstract).

[46] 牛玺朝, 户少武, 杨阳, 童楷程, 景立权, 朱建国, 王余龙, 杨连新, 王云霞. 大气CO2浓度增高对不同水稻品种稻米品质的影响. 中国生态农业学报(中英文), 2021, 29: 509–519.
Niu X C, Hu S W, Yang Y, Tong K C, Jing L Q, Zhu J G, Wang Y L, Yang L X, Wang Y X. Effects of CO2 concentration enrichment on the grain quality of different rice varieties. Chin J Eco-Agric, 2021, 29: 509–519 (in Chinese with English abstract).

[47] 李常鑫, 闫琪, 倪莉莉, 张淑鑫, 王丽梅. 大气CO2浓度升高对玉米非结构性碳水化合物和籽粒品质的影响. 应用生态学报, 2023, 34: 123–130.
Li C X, Yan Q, Ni L L, Zhang S X, Wang L M. Effects of elevated atmospheric CO2 concentration on nonstructural carbohydrates and grain quality of maize. Chin J Appl Ecol, 2023, 34: 123–130 (in Chinese with English abstract).

[48] Rajasekar S, Elango R. Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Current Botany, 2011, 35: 167–171.

[49] 曹志强, 金慧, 许永华, 张引, 杨文志. 微生物菌剂用于连续移栽人参实验研究. 微生物学杂志, 2005, 25(3): 105107.
Cao Z Q, Jin H, Xu Y H, Zhang Y, Yang W Z. Continuous cultivation of ginseng in the same field with microbial preparation. J Microbiol, 2005, 25(3): 105–107 (in Chinese with English abstract).

[50] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响. 作物学报, 2021, 47: 1383–1390.
Deng Y, Wang J L, Wang C Y, Zhao L, Zhang L G, Guo H X, Guo H X, Qin L X, Wang M X. Effects of combined application of bio-bacterial fertilizer and inorganic fertilizer on agronomic characters, yield, and quality in quinoa. Acta Agron Sin, 2021, 47: 1383–1390 (in Chinese with English abstract).

[1] WANG Fen, WU Dong-Li , ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948.
[2] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[3] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[4] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[5] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[6] WANG Lu, ZHAO Jiong-Chao, WANG Yi-Xuan, MI Yan-Hua, ZHANG Ning-Yi, ZHAO Ming-Yu, CHU Qing-Quan. Spatial distribution of cultivation suitable area for Panax notoginseng and its response to climate change [J]. Acta Agronomica Sinica, 2024, 50(11): 2860-2869.
[7] CHENG Hua-Qiang, HOU Qing-Qing, ZHU Min, YANG Xuan. Effects of climate change and crop rotation system on forage oats yield in northern Shanxi province [J]. Acta Agronomica Sinica, 2024, 50(10): 2599-2613.
[8] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[9] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[10] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[11] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[12] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[13] TAO Shi-Bao, KE Jian, SUN Jie, YIN Chuan-Jun, ZHU Tie-Zhong, CHEN Ting-Ting, HE Hai-Bing, YOU Cui-Cui, GUO Shuang-Shuang, WU Li-Quan. High-yielding population agronomic characteristics of middle-season indica hybrid rice with different panicle sizes in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2023, 49(2): 511-525.
[14] YE Xiao-Lei, GENG Guo-Tao, XIAO Guo-Bin, LYU Wei-Sheng, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium application rate on yield and quality in oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(11): 3063-3073.
[15] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[3] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[4] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[5] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[6] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[7] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[8] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .