Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 820-835.doi: 10.3724/SP.J.1006.2024.34144

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L.

LI Yang-Yang1,2,3(), WU Dan2,3, XU Jun-Hong2,3, CHEN Zhuo-Yong1,2,3, XU Xin-Yuan1,2,3, XU Jin-Pan1,2,3, TANG Zhong-Lin1,2,3, ZHANG Ya-Ru1,2,3, ZHU Li1,2,3, YAN Zhuo-Li1,2,3, ZHOU Qing-Yuan1,2,3, LI Jia-Na1,2,3, LIU Lie-Zhao1,2,3, TANG Zhang-Lin1,2,3,*()   

  1. 1Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing 401329, China
    2College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    3Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2023-08-24 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-13
  • Contact: * E-mail: tangzhlin@swu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1201600);Chongqing Technology Innovation and Application Development Key Project(cstc2021jscx-cylhX0003)

Abstract:

Drought stress severely limits planting promotion and yield increase in Brassica napus L. Drought tolerance is a complex quantitative trait controlled by multiple genes. Combining QTL and transcriptome is an effective method for identifying candidate genes associated with drought tolerance in B. napus. In this study, the seedlings of F2:6 and F2:8 recombinant inbred lines, constructed by Sanliu’ai (drought sensitivity line) and Kelina-2 (drought tolerance line), were treated with drought stress and well watering at seedling stage. Shoot fresh weight, shoot dry weight, leaf relative water content, malondialdehyde content, and soluble sugar content were measured. The QTL and candidate intervals were identified based on genetic linkage maps, which were constructed using SSR and SNP markers with polymorphism. Subsequently, candidate genes associated with drought tolerance were screened by combining transcriptome sequencing of No11 (drought tolerance material) and No28 (drought sensitivity material). Drought stress decreased shoot fresh weight, shoot dry weight, and leaf relative water content, and increased the contents of malondialdehyde and soluble sugar. QTL and candidate intervals related to drought tolerance were distributed on chromosome A01, A02, A06, A08, A09, A10, C02, C03, C04, C06, and C09. By transcriptome analysis of drought tolerance and sensitivity materials under well water, drought stress for 24, 36, and 48 h, the major different expression genes were enriched in the pathways associated with photosynthesis, fatty acid metabolism, amino acid metabolism, plant hormone signal transduction, ribosome, circadian rhythm and biosynthesis of keratin, cork and wax. A total of 28 candidate genes related to drought tolerance were identified by combining QTL and transcriptome. They coded FLC, bHLH105, TGA4, TEM1, ERF003, ACO3, CHLI1, LHCB6, PORC, etc., which had transcription factor activity, ethylene production and signal transduction, chlorophyll biosynthesis and binding, chlorophyll oxidoreductase and encoding ribosome proteins. These results could provide a basis for revealing drought tolerance mechanism and molecular breeding of drought tolerance variety in B. napus.

Key words: Brassica napus L., drought tolerance, QTL, transcriptome, candidate genes

Table 1

Variance analysis of traits relation to drought tolerance in rapeseed F2:6 and F2:8 RIL populations"

群体
Population
变异来源
Source of variation
RWC SFW SDW SUG MDA
DF F-value DF F-value DF F-value DF F-value DF F-value
F2:6 水分间Water 1 11.18** 1 850.03** 1 214.32** 1 30.86** 1 91.75**
家系间Line 103 4.64** 104 14.41** 104 14.96** 104 15.29** 104 552.39**
水分×家系
Water×Line
103
3.10**
104
10.55**
104
5.98**
104
9.96**
104
392.10**
误差Error 208 210 210 210 210
F2:8 水分间Water 1 3175.43** 1 2237.27** 1 389.89** 1 1490.35** 1 1139.48**
家系间Line 125 2.36** 125 6.25** 125 6.21** 125 15.72** 125 21.62**
水分×家系
Water×Line
125
2.30**
124
3.65**
124
1.76**
124
13.32**
123
11.86**
误差Error 446 426 414 462 471

Table 2

Descriptive statistics of traits relation to drought tolerance in rapeseed parental, F2:6 and F2:8 RIL populations"

性状
Trait
群体
Population
处理
Treatment
亲本Parent 群体Population
三六矮
Sanliu’ai
科里纳-2
Kelina-2
平均值
Average
标准误差
SE
变幅
Range
峰度
Kurtosis
偏度
Skewness
RWC (%) F2:6 CK 91.72 93.35 86.51 0.54 68.96-96.55 0.95 -0.76
DS 83.98 86.24 85.16 0.58 61.78-96.87 2.27 -1.19
F2:8 CK 88.00 86.84 89.74 0.28 72.10-95.14 7.26 -1.64
DS 65.46 76.11 71.27 0.42 60.83-82.91 -0.55 -0.06
SFW (g) F2:6 CK 20.18 10.78 16.55 0.46 4.79-30.27 0.01 0.21
DS 15.67 9.00 11.71 0.36 4.79-23.90 0.15 0.71
F2:8 CK 44.78 27.06 36.79 1.02 11.84-75.42 1.57 1.04
DS 19.22 22.70 14.36 0.38 6.58-25.85 -0.03 0.62
SDW (g) F2:6 CK 1.27 0.72 1.18 0.04 0.41-2.34 0.06 0.64
DS 0.95 0.61 0.95 0.03 0.37-1.92 0.47 0.87
F2:8 CK 3.80 2.65 2.72 0.08 0.89-5.90 0.85 0.74
DS 2.30 2.10 1.81 0.05 0.59-3.48 0.90 0.59
SUG (μg g-1) F2:6 CK 1496.20 542.03 2744.17 226.85 186.82-16219.47 12.23 2.83
DS 6485.20 1081.01 3271.71 249.66 222.49-12447.88 3.50 1.69
F2:8 CK 3888.00 4581.34 5349.75 131.73 2144.61-10444.09 0.82 0.75
DS 6265.26 7643.01 7278.97 131.53 3370.63-10742.93 0.17 0.15
MDA (μmol g-1) F2:6 CK 7.49 13.97 9.80 0.44 3.43-34.67 8.58 2.26
DS 12.77 17.70 10.04 0.34 5.28-23.09 1.81 1.31
F2:8 CK 41.18 20.43 29.26 0.97 9.34-64.77 0.54 0.83
DS 50.15 50.63 41.03 1.04 23.76-71.73 -0.63 0.51

Fig. 1

Distribution of traits relation to drought tolerance in rapeseed F2:6 and F2:8 RIL populations Abbreviations are the same as those given in Tables 1 and 2."

Fig. 2

Traits associated with drought tolerance in drought resistance and sensitivity rapeseed **: P < 0.01. Abbreviations are the same as those given in Table 1."

Fig. 3

Genetic linkage map based on SSR and QTL distribution DRI: drought resistance index. The other abbreviations are the same as those given in Tables 1 and 2."

Fig. 4

Genetic linkage map based on SNP and QTL distribution"

Table 3

QTL and candidate range of traits associated with drought tolerance in rapeseed"

群体
Population
QTL 置信区间
Confidence interval (cM)
邻近标记
Marker
物理位置
Physical position
(bp)
阈值
LOD
染色体
Chr.
候选区间
Candidate range
(bp)
F2:6 qSFWCK-A01 78.85-86.82 AX-95683221 4227188 3.04 A01 4047188-4407188
AX-179306831 4399498 2.89 A01 4219498-4579498
F2:8 qRWCDRI-A02 17.64-31.87 AX-177910459 262823 3.07 A02 82823-442823
F2:8 qRWCDS-A02 16.64-33.30 AX-177910459 262823 2.99 A02 82823-442823
F2:8 qSFWCK-A02 43.41-47.22 AX-177829332 4692035 2.53 A02 4512035-4872035
F2:8 qSUGCK-A02 0.00-8.00 AX-177834286 20489037 3.20 A02 20309037-20669037
F2:6 qSDWCK-A02 0.00-11.74 SWUA02_198 893419-893684 3.14 A02 713419-1073684
A02_2 893423-893813 3.47 A02 713423-1073813
F2:8 qSFWDRI-A06 136.38-140.39 AX-95506320 20609909 2.50 A06 20429909-20789909
F2:8 qMDACK-A08 28.40-30.85 AX-95638560 11831251 2.58 A08 11331251-12331251
F2:8 qSFWDRI-A08 89.56-109.10 AX-95637797 16969405 3.04 A08 16469405-17469405
F2:6 qSDWCK-A09 37.27-44.43 AX-179306992 2292222 2.59 A09 1912222-2672222
F2:6 qSFWCK-A09 37.27-44.43 AX-179306992 2292222 2.70 A09 1912222-2672222
F2:8 qMDADRI-A09 163.36-165.01 AX-177830392 26135201 4.09 A09 25755201-26515201
F2:6 qMDACK-A09 0.00-2.00 nia_m046 21769576-21769946 2.91 A09 21389576-22149946
F2:6 qRWCDS-A09 0.00-2.00 nia_m046 21769576-21769946 2.87 A09 21389576-22149946
F2:8 qRWCCK-A10 12.22-14.56 AX-182144456 885133 3.06 A10 675133-1095133
F2:6 qSFWDRI-A10 134.63-148.54 AX-177911667 16025485 3.04 A10 15815485-16235485
AX-95637504 16164216 3.08 A10 15954216-16374216
AX-182169619 16167478 3.04 A10 15957478-16377478
F2:8 qSUGCK-C02 7.00-45.13 AX-182158861 16526368 2.58 C02 15326368-17726368
AX-95636960 16803922 3.01 C02 15603922-18003922
AX-182136799 24120437 2.99 C02 22920437-25320437
AX-182139036 28872169 3.49 C02 27672169-30072169
AX-182125192 33288173 2.98 C02 32088173-34488173
AX-105306912 34988363 2.58 C02 33788363-36188363
AX-95505280 41712868 2.96 C02 40512868-42912868
F2:6 qRWCDRI-C02 29.49-31.89 SWUC316 33799496-33799694 3.36 C02 32599496-34999694
F2:6 qRWCDS-C02 29.49-30.89 SWUC316 33799496-33799694 2.77 C02 32599496-34999694
F2:6 qMDADS-C02 29.89-37.57 SWUC316 33799496-33799694 3.35 C02 32599496-34999694
SWUC344 40102848-40103191 2.53 C02 38902848-41303191
SWUC284 43919221-43919418 2.54 C02 42719221-45119418
SWUC293 36909045-36909237
19357230-19357429
3.00 C02
A02
35709045-38109237
19177230-19537429
F2:8 qSFWDRI-C03 153.23-157.21 AX-95636893 9150013 2.71 C03 8750013-9550013
F2:6 qSUGDRI-C04 103.69-108.02 AX-95506064 7272757 7.10 C04 6682757-7862757
F2:8 qSUGDS-C06 74.57-101.32 AX-105336545 29172287 3.04 C06 28772287-29572287
AX-95665032 29186383 2.66 C06 28786383-29586383
AX-86230901 29308911 3.04 C06 28908911-29708911
AX-95665273 29401522 3.04 C06 29001522-29801522
AX-95664947 29433854 3.04 C06 29033854-29833854
AX-105310203 29489446 3.04 C06 29089446-29889446
AX-105308711 29627549 3.04 C06 29227549-30027549
AX-86230806 29710301 3.04 C06 29310301-30110301
AX-182145054 29797943 3.04 C06 29397943-30197943
AX-86215830 30202409 3.04 C06 29802409-30602409
AX-86230835 30204371 2.92 C06 29804371-30604371
AX-105308457 30304436 3.04 C06 29904436-30704436
AX-95665820 30314052 3.04 C06 29914052-30714052
AX-105310125 30791904 3.04 C06 30391904-31191904
AX-182087795 31059928 3.04 C06 30659928-31459928
AX-95635741 31183285 3.04 C06 30783285-31583285
AX-86230832 31264725 3.11 C06 30864725-31664725
AX-177912717 31340640 2.95 C06 30940640-31740640
F2:8 qSDWDRI-C09 19.55-37.10 AX-95509234 35782323 2.70 C09 35072323-36492323
AX-86236963 37494562 2.68 C09 36784562-38204562
AX-182158558 46574561 2.68 C09 45864561-47284561

Fig. 5

Analysis of differentially expressed genes of drought-tolerance and drought-sensitivity materials in rapeseed under well water and drought stress A and D: the number of differentially expressed genes and Venn diagram between each time under drought stress and well water in two materials; B and C: the number of differentially expressed genes and Venn diagrams between two materials; E: KEGG enrichment pathway of core differentially expressed genes; F: heatmap of candidate genes related to drought tolerance; No11: drought resistance material; No28: drought sensitivity material; CK: well water; DS24h: 24 h under drought stress; DS36h: 36 h under drought stress; DS48h: 48 h under drought stress."

Fig. 6

Cluster dendrogram and module-trait relationships of WGCNA Abbreviations are the same as those given in Table 1."

Fig. 7

KEGG enrichment pathway in module significant associated with each trait and heatmap of candidate genes related to drought tolerance A: MEdeeppink1; B: MEfirebrick2; C: MEindianred4; D: MEplum; E: heatmap. Abbreviations are the same as those given in Fig. 5."

Table 4

Candidate genes associated with drought tolerance in rapeseed"

QTL 候选基因Candidate gene QTL 候选基因Candidate gene
qSFWCK-A01 BnaA01g08750D (MYC4)
BnaA01g09270D (CHLI1)
qMDADRI-A09 BnaA09g36380D (RR9)
qRWCDRI-A02 BnaA02g00310D (TGA4) qMDACK-A09 BnaA09g28670D (TEM1)
BnaA09g29410D (PRE6)
qRWCDS-A02 BnaA02g00310D (TGA4) qRWCDS-A09 BnaA09g28670D (TEM1)
BnaA09g29410D (PRE6)
qSFWCK-A02 BnaA02g09540D (RPL24) qRWCCK-A10 BnaA10g01420D (EL22Z)
BnaA10g02050D (PORC)
qSUGCK-A02 BnaA02g27860D (CYP71B22)
BnaA02g27940D (bHLH105)
qSFWDRI-A10 BnaA10g25310D (SUVH1)
qSDWCK-A02 BnaA02g01690D (RPL10) qSUGCK-C02 BnaC02g20870D (HPA1)
qMDACK-A08 BnaA08g13440D (RPL28C)
BnaA08g14220D (ACO3)
qMDADS-C02 BnaC02g40790D (KNAT3)
BnaC02g40810D (ERF003)
qSFWDRI-A08 BnaA08g23760D (LHCB6)
BnaA08g25090D (E2-OGDH)
BnaA08g25130D (ADT1)
qSFWDRI-C03 BnaC03g17470D (PRK1)
BnaC03g17780D (AIP1)
BnaC03g18600D (PXG3)
qSDWCK-A09 BnaA09g04650D (ERF003)
BnaA09g05170D (RUP2)
qSDWDRI-C09 BnaC09g45770D (RPL37B)
BnaC09g46500D (FLC)
qSFWCK-A09 BnaA09g04650D (ERF003)
BnaA09g05170D (RUP2)
[1] Batool M, El-Badri A M, Wang Z K, Mohamed I A A, Yang H Y, Ai X Y, Salah A, Hassan M U, Sami R, Kuai J, Wang B, Zhou G S. Rapeseed morpho-physio-biochemical responses to drought stress induced by PEG-6000. Agronomy, 2022, 12: 579.
doi: 10.3390/agronomy12030579
[2] 周广生, 王晶, 蒯婕, 汪波. 专辑导读: 加强大田经济作物栽培措施与环境/资源配置的互作研究、推动产业高效优质发展. 作物学报, 2021, 47: 1633-1638.
doi: 10.3724/SP.J.1006.2021.04633
Zhou G S, Wang J, Kuai J, Wang B. Editorial: strengthening the research on the interaction between cultivated measures and environment/resource allocation of field economic crops to promote the development of industry with high efficiency and high quality. Acta Agron Sin, 2021, 47: 1633-1638. (in Chinese with English abstract)
[3] 宁宁, 莫娇, 胡冰, 李大双, 娄洪祥, 王春云, 白晨阳, 蒯婕, 汪波, 王晶, 徐正华, 李晓华, 贾才华, 周广生. 长江流域不同生态区油菜籽关键品质比较研究. 作物学报, 2023, 49: 3315-3327.
doi: 10.3724/SP.J.1006.2023.34017
Ning N, Mo J, Hu B, Li D S, Lou H X, Wang C Y, Xiang C Y, Kuai J, Wang B, Wang J, Xu Z H, Li X H, Jia C H, Zhou G S. Comparative study on the processing quality of winter rape in different ecological zones of the Yangtze River valley. Acta Agron Sin, 2023, 49: 3315-3327. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2023.34017
[4] 张佳运, 马淑梅, 余常兵, 王淑彬, 魏亚凤, 杨文钰, 王小春. 长江流域旱地多熟模式水分供需平衡特征与水分生产效益. 作物学报, 2022, 48: 2891-2907.
doi: 10.3724/SP.J.1006.2022.14206
Zhang J Y, Ma S M, Yu C B, Wang S B, Wei Y F, Yang W Y, Wang X C. Characteristics of water supply-demand equilibrium and water production benefits of the dryland multiple cropping patterns in the Yangtze Rive basin. Acta Agron Sin, 2022, 48: 2891-2907. (in Chinese with English abstract)
[5] 万林, 李张开, 李素, 刘丽欣, 马霓, 张春雷. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42: 461-471.
Wan L, Li Z K, Li S, Liu L X, Ma N, Zhang C L. Alleviation effects of exogenous strigolactone on growth of Brassica napus L. seedling under drought stress. Chin J Oil Crop Sci, 2020, 42: 461-471. (in Chinese with English abstract)
[6] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析. 作物学报, 2021, 47: 462-471.
doi: 10.3724/SP.J.1006.2021.04034
Meng J Y, Liang G W, He Y J, Qian W. QTL mapping of salt and drought tolerance related traits in Brassica napus L. Acta Agron Sin, 2021, 47: 462-471. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04034
[7] 李真. 甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2008. pp 46-48.
Li Z. Study on QTL Associated with Waterlogging Tolerance and Drought Resistance during Seedling Stage in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008. pp 46-48. (in Chinese with English abstract)
[8] 王丹丹. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位. 西南大学硕士学位论文, 重庆, 2013. pp 32-33.
Wang D D. Mapping and QTL Analysis of Genes to Drought Tolerance in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2013. pp 32-33. (in Chinese with English abstract)
[9] Mahmoud G, Chao H B, Li H X, Zhao W G, Lu G Y, Li M T. QTL mapping for seed germination response to drought stress in Brassica napus. Front Plant Sci, 2021, 11: 629970.
doi: 10.3389/fpls.2020.629970
[10] Shahzad A, Qian M C, Sun B Y, Mahmood U, Li S T, Fan Y H, Chang W, Dai L S, Zhu H, Li J N, Qu C M, Lu K. Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Sci, 2021, 6: 12-22.
doi: 10.1016/j.ocsci.2021.01.002
[11] Khanzada H, Wassan G M, He H H, Mason A S, Keerio A A, Khanzada S, Faheem M, Solangi A M, Zhou Q H, Fu D H, Huang Y J, Rasheed A. Differentially evolved drought stress indices determine the genetic variation of Brassica napus at seedling traits by genome-wide association mapping. J Adv Res, 2020, 24: 447-461.
doi: 10.1016/j.jare.2020.05.019 pmid: 32577311
[12] Tan M, Liao F, Hou L T, Wang J, Wei L J, Jian H J, Xu X F, Li J N, Liu L Z. Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica, 2017, 213: 40.
doi: 10.1007/s10681-016-1832-x
[13] 王浩. 基于GWAS和转录组测序鉴定谷子硒响应相关候选基因. 山西农业大学硕士学位论文, 山西太原, 2022. p 9.
Wang H. Identification of Selenium-Responsive Candidate Genes in Foxtail Millet Based on GWAS and Transcriptome Sequencing. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China, 2022. p 9. (in Chinese with English abstract)
[14] Liu C Q, Zhang X K, Zhang K, An H, Hu K N, Wen J, Shen J X, Ma C Z, Yi B, Tu J X, Fu T D. Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress. Int J Mol Sci, 2015, 16: 18752-18777.
doi: 10.3390/ijms160818752
[15] Wang P, Yang C L, Chen H, Song C P, Zhang X, Wang D J. Transcriptomic basis for drought-resistance in Brassica napus L. Sci Rep, 2017, 7: 40532.
doi: 10.1038/srep40532 pmid: 28091614
[16] Zhou H W, Xiao X J, Asjad A, Han D P, Zheng W, Xiao G B, Huang Y J, Zhou Q H. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). BMC Plant Biol, 2022, 22: 130.
doi: 10.1186/s12870-022-03508-w
[17] Jian H J, Zhang A X, Ma J Q, Wang T Y, Yang B, Shuang L S, Liu M, Li J N, Xu X F, Paterson A H, Liu L Z. Joint QTL mapping and transcriptome sequencing analysis reveal candidate flowering time genes in Brassica napus L. BMC Genomics, 2019, 20: 21.
doi: 10.1186/s12864-018-5356-8
[18] Guo J, Li C H, Zhang X Q, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Yang D G, Wang T Y. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci, 2020, 292: 110380.
doi: 10.1016/j.plantsci.2019.110380
[19] Sevanthi A M, Sinha S K, Sureshkumar V, Rani M, Saini M R, Kumari S, Kaushik M, Prakash C, Venkatesh K, Singh G P, Mohapatra T, Mandal P K. Integration of dual stress transcriptomes and major QTL from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 2021, 14: 49.
doi: 10.1186/s12284-021-00487-8 pmid: 34089405
[20] 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017. p 16.
Jing R R. Genome-wide Assocaiton Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. p 16. (in Chinese with English abstract)
[21] Van Ooijen J W. JoinMap 4: Software for the Calculation of Genetic Linkage Maps in Experimental Populations, 2006. Wageningen: Kyazma B V. pp 1-63.
[22] Van Ooijen J W. MapQTL 6: Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species, 2009. Wageningen: Kyazma B V. pp 1-64.
[23] Voorrips R E, MapChart: software for the graphical presentation of linkage maps and QTL. J Hered, 2002, 93: 77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[24] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析. 作物学报, 2023, 49: 2160-2170.
doi: 10.3724/SP.J.1006.2023.24190
Li X, Yang H, Luo L, Li H D, Zhang K, Zhang X R, Li Y Y, Yu H Y, Wang T Y, Liu J Q, Wang Y, Liu F Z, Wan Y S. QTL mapping for single-seed weight of cultivated peanut. Acta Agron Sin, 2023, 49: 2160-2170. (in Chinese with English abstract)
[25] 李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因预测. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract)
[26] 王瑞霞, 杜海平, 田宏先. 干旱胁迫对不同生育期芥菜型春油菜幼苗生长的影响. 南方农业, 2019, 13(26): 140-143.
Wang R X, Du H P, Tian H X. Effects of drought stress on the growth of seedlings at different growth stages in spring Brassica juncea. South China Agric, 2019, 13(26): 140-143. (in Chinese)
[27] 石鹏程. 甘蓝型油菜苗期干旱及旱后复水相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2019. p 15.
Shi P C. Genome-wide Association Mapping for Drought and Rewatering Related Traits at Seedling Stage in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2019. p 15. (in Chinese with English abstract)
[28] 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46: 476-485.
doi: 10.3864/j.issn.0578-1752.2013.03.004
Xie X Y, Zhang X, Zhang B. Evalution of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.). Sci Agric Sin, 2013, 46: 476-485. (in Chinese with English abstract)
[29] 洪双. 全基因组关联分析挖掘甘蓝型油菜耐旱候选基因. 中国农业科学院硕士学位论文, 北京, 2018. pp 31-32.
Hong S. Genome-wide Association Study Identifies Candidate Genes for Drought Tolerance in Brassica napus. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2018. pp 31-32. (in Chinese with English abstract)
[30] 吴金锋. 甘蓝型油菜SNP与SSR分析及耐旱性状的全基因组关联分析. 中国农业科学院博士学位论文, 北京, 2014. pp 27-28.
Wu J F. SNP and SSR Analysis and Genome-wide Association Mapping of Drought Tolerance Trait in Brassica napus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. pp 27-28. (in Chinese with English abstract)
[31] Zhu B, Xu H X, Guo X, Lu J X, Liu X Y, Zhang T. Comparative analysis of drought responsive transcriptome in Brassica napus genotypes with contrasting drought tolerance under different potassium levels. Euphytica, 2023, 219: 25.
doi: 10.1007/s10681-023-03156-7
[32] Fang S, Zhao P M, Tan Z D, Peng Y, Xu L T, Jin Y T, Wei F, Guo L, Yao X. Combining physio-biochemical characterization and transcriptome analysis reveal the responses to varying degrees of drought stress in Brassica napus L. Int J Mol Sci, 2022, 23: 8555.
doi: 10.3390/ijms23158555
[33] Xiong J L, Dai L L, Ma N, Zhang C L. Transcriptome and physiological analyses reveal that AM1 as an ABA-mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul, 2018, 85: 73-90.
doi: 10.1007/s10725-018-0374-8
[34] Chen Q, Zheng Y, Luo L D, Yang Y P, Hu X Y, Kong X X. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana. Biochem Biophys Res Commun, 2018, 495: 1102-1107.
doi: 10.1016/j.bbrc.2017.11.149
[35] Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109.
doi: S0168-9452(18)31005-7 pmid: 30824033
[36] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Chen M, Ma Y Z. AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in Arabidopsis thaliana. Biochem Biophys Res Commun, 2015, 457: 433-439.
doi: 10.1016/j.bbrc.2015.01.009
[37] Luo G Y, Liu A L, Zhou X Y, Zhang X W, Peng Y, Chen X B. Arabidopsis TEMPRANILLO1 transcription factor AtTEM1 negatively regulates drought tolerance. Plant Growth Regul, 2017, 83: 119-127.
doi: 10.1007/s10725-017-0288-x
[38] Naing A H, Campol J R, Kang H, Xu J P, Chung M Y, Kim C K. Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in Petunia. Front Plant Sci, 2022, 13: 844449.
doi: 10.3389/fpls.2022.844449
[39] Liu W J, Wang Y C, Gao C Q. The ethylene response factor (ERF) genes from Tamarix hispida respond to salt, drought and ABA treatment. Trees, 2013, 28: 317-327.
doi: 10.1007/s00468-013-0950-5
[40] Rong W, Qi L, Wang A Y, Ye X G, Du L P, Liang H X, Xin Z Y, Zhang Z Y. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J, 2014, 12: 468-479.
doi: 10.1111/pbi.12153 pmid: 24393105
[41] Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F, Zhang D P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot, 2012, 63: 1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917
[42] Pattanayak G K, Tripathy B C. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS One, 2011, 6: e26532.
doi: 10.1371/journal.pone.0026532
[43] Tomiyama M, Inoue S I, Tsuzuki T, Soda M, Morimoto S, Okigaki Y, Ohishi T, Mochizuki N, Takahashi K, Kinoshita T. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. J Plant Res, 2014, 127: 553-563.
doi: 10.1007/s10265-014-0636-0
[44] Condori-Apfata J A, Batista-Silva W, Medeiros D B, Vargas J R, Valente L M L, Pérez-Díaz J L, Fernie A R, Araújo W L, Nunes- Nesi A. Downregulation of the E2 subunit of 2-Oxoglutarate dehydrogenase modulates plant growth by impacting carbon- nitrogen metabolism in Arabidopsis thaliana. Plant Cell Physiol, 2021, 62: 798-814.
doi: 10.1093/pcp/pcab036 pmid: 33693904
[45] Niu C D, Jiang L J, Cao F G, Liu C, Guo J X, Zhang Z T, Yue Q Y, Hou N, Liu Z Y, Li X W, Tahir M M, He J Q, Li Z X, Li C, Ma F W, Guan Q M. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. Plant Cell, 2022, 34: 3983-4006.
doi: 10.1093/plcell/koac220
[46] Seraj R G M, Tohidfar M, Irani M A, Esmaeilzadeh-Salestani K, Moradian T, Ahmadikhah A, Behnamian M. Metabolomics analysis of milk thistle lipids to identify drought-tolerant genes. Sci Rep, 2022, 12: 12827.
doi: 10.1038/s41598-022-16887-9 pmid: 35896570
[47] Pandian B A, Sathishraj R, Djanaguiraman M, Prasad P V V, Jugulam M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants, 2020, 9: 454.
doi: 10.3390/antiox9050454
[48] Pal G, Bakade R, Deshpande S, Sureshkumar V, Patil S S, Dawane A, Agarwal S, Niranjan V, PrasannaKumar M K, Vemanna R S. Transcriptomic responses under combined bacterial blight and drought stress in rice reveal potential genes to improve multi-stress tolerance. BMC Plant Biol, 2022, 22: 349.
doi: 10.1186/s12870-022-03725-3 pmid: 35850621
[1] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[2] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad Yousof, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[3] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[4] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[5] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[6] SONG Meng-Yuan, GUO Zhong-Xiao, SU Yu-Fei, DENG Kun-Peng, LAN Tian-Jiao, CHENG Yu-Xin, BAO Shu-Ying, WANG Gui-Fang, DOU Jin-Guang, JIANG Ze-Kai, WANG Ming-Hai, XU Ning. Transcriptome analysis of a stigma exsertion mutant in mungbean [J]. Acta Agronomica Sinica, 2024, 50(4): 957-968.
[7] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[8] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[9] HAO Qian-Lin, YANG Ting-Zhi, LYU Xin-Ru, QIN Hui-Min, WANG Ya-Lin, JIA Chen-Fei, XIA Xian-Chun, MA Wu-Jun, XU Deng-An. QTL mapping and GWAS analysis of coleoptile length in bread wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 590-602.
[10] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[11] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[12] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[13] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[14] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[15] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .