Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 808-819.doi: 10.3724/SP.J.1006.2024.34106

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf

WANG Ya-Qi1(), XU Hai-Feng1, LI Shu-Guang1, FU Meng-Meng1, YU Xi-Wen1, ZHAO Zhi-Xin1, YANG Jia-Yin1,*(), ZHAO Tuan-Jie2,*()   

  1. 1Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu / Huai’an Key Laboratory for Agricultural Biotechnology / Key Laboratory of Germplasm Innovation in Lower Reaches of the Huaihe River, Ministry of Agriculture and Rural Affairs, Huai’an 223001, Jiangsu, China
    2Soybean Research Institute, Nanjing Agricultural University / National Center for Soybean Improvement (Nanjing) / Key Laboratory for Biology and Genetic Improvement of Soybean (General), Ministry of Agriculture and Rural Affairs / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu, China
  • Received:2023-06-27 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-14
  • Contact: * E-mail: tjzhao@njau.edu.cn; E-mail: hynksyjy@163.com
  • Supported by:
    National Natural Science Foundation of China(32201729);Natural Science Research Program of Huai’an (Joint Special Project, HABL202120)(HABL202120);Scientific Research Fund of Startup and Development for Introduced High-level Talents, Huai’an Academy of Agricultural Sciences(0112023014B);Research and Development Fund Project of Huai’an Academy of Agricultural Sciences(HNY202221);Core Technology Development for Breeding Program of Jiangsu Province(JBGS[2021]057);Jiangsu Collaborative Innovation Center for Modern Crop Production(JCIC-MCP)

Abstract:

Research on lesion mimic mutant, mining resistance genes, and developing superior disease-resistant new soybean varieties by molecular design breeding methods can contribute to the alleviating the environmental pollution caused by chemical pesticides and drug resistance to disease. In this study, the disease-like rugose leaf mutant NT301 obtained by 60Coγ mutagenesis as the male parent was crossed with W82, KF1, and KF35, respectively, to construct F2 and F2:3 segregating populations. Using SSR and SNP markers, target gene 1 (rl1) was narrowed to 937 kb on chromosome 18 with 66 genes and target gene 2 (rl2) was narrowed to 130 kb on chromosome 8 with 15 genes. The gene expression patterns of the wild type and NT301 were compared using gene chip technology, and the KEGG pathways of the differentially expressed genes were assessed. Moreover, semi quantitative and quantitative RT-PCR methods were used to analyze the relative expression levels of candidate genes on chromosome 8. The results showed that the relative expression level of Glyma.08G332500 in NT301 was four times higher than the wild type. In contrast, the expression levels of other genes showed no more than double difference. Therefore, we suggest that Glyma.08G332500 may be a candidate gene for NT301.

Key words: soybean, disease-like mutant, rugose leaf, gene expression profiles

Table S1

Primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
BARCSOYSSR_18_0415 GCTTGGCGAATTCCATCTAA ATTCATTTCACATCCCAGGC
BARCSOYSSR_18_0419 TTTATTATGGGGATCAAATTAAAACT TCGGAGTTAGCCAAATCAAAT
BARCSOYSSR_18_0485 AAGGATTGGCAAAGCGATTA AAAAACAGGGTTTGGTGGGT
BARCSOYSSR_18_0444 TTGACGGCCTTATTTTGGAC GGTGGCTGAATCCAAGACAT
BARCSOYSSR_18_0481 ATCTCAAGGATCTGGCAAGC AATATTCTTTGGCGGTGGTG
BARCSOYSSR_08_1700 CCTTTAATCAACTCTGTGAGATCG GCATAATGCTATTCTCCGCA
BARCSOYSSR_08_1800 ACAAGGAGATTTGGCTTTGC CCGGAGATCGATAAGTTGCT
BARCSOYSSR_08_1724 CATTGGAGCTTGGTAAGGGA GGGAGCAGAGAACTTGAGCA
BARCSOYSSR_08_1736 TCCTTTTTGAAAACGAAATTCA GAGTACATTGGAATAACTGTGCAA
BARCSOYSSR_08_1724 CATTGGAGCTTGGTAAGGGA GGGAGCAGAGAACTTGAGCA
BARCSOYSSR_08_1738 TGTTAGGGACACACTCAACCC CCACGAGATAAGACGAGCAA
BARCSOYSSR_08_1753 CCAGCCACTTCACAGACTGA TTGGGTTATCTGTTTGCTTTGTT
SSR18 GGCTTGACTCTCTGAATCTGTT TAAACAACTTTGAGCCAACGGC
SSR40 ACAAACCTGGTTCGGCTATGT TTACCAAAGCAGTGGGAGCC
Satt409 CCTTAGACCATGAATGTCTCGAAGATA CTTAAGGACACGTGGAAGATGACTAC
SNP1 TTCGAAGGAACTTACTCATTA CCAACATTCTCAAGCCCAAGG
SNP2 AGCACGATTCTACCTCCGAAT GGTAGGCAATCTGAACTCATCA
SNP3 AGGGATATGGTTCATCTTTCATCT ATGATGTGTTATGTGCATAT
Glyma.08g332000QRT GGCGTCCAGGATTTACAAAGT TGATATTGCACCAGGCTTTGA
Glyma.08g332100QRT CATGGCTGGCTTTAAGAGGA AGTATCAAAGAAGGAGCCGTT
Glyma.08g332200QRT ACTACGGTGCATCAGAGATTC TCAGTGCAATCATAACTGTGGTA
Glyma.08g332300QRT GGCCGCTACCATCAACTTCA AGCTCTAGTGAACTACGGCATT
Glyma.08g332400QRT TGCCTTCACACATTATAAACAGG TATGGTTTCCACTTCCGACCC
Glyma.08g332500QRT AATGAGAGAACAAAGGGAAGAGG GAGTCACAAAGCAACCCACAG
Glyma.08g332600QRT GATGTGGTGCAGAGCAAACC CACCATCGTCAAGTTGTGGC
Glyma.08g332700QRT TGGTGATGAAGAACAACAGC ACAAGAAGTCCTGGCCTAGC
Glyma.08g332800QRT TGCTGAATCTGGCATGAACC GACGGATGGCGCAAAACAAG
Glyma.08g332900QRT TTGTTGACAGTGGTATTGGCA AACCCCACACCAAACTGTCC
Glyma.08g333000QRT CGGTTTGTCTATATTGTTGAAGG TTTCTCCACTGAACTGGTCCAC
Glyma.08g333100QRT CCGCCCAAACCTCTGAAGAT CAGACTGGAAGTTGCCAGGTA
Glyma.08g333200QRT CAAGAACTGCAACTGAAAATGGTTG CATGCCAAAACTGTACACATCAC
Glyma.08g333300QRT CGCCAGAACTTTGCAAGGAA ACCCGAACCATTCACGACTT
Glyma.08g333400QRT TGAAGCATGGCGAAGCAGTA CGAACACGTGGGTCATGGAA
GmActin GGTGGTTCTATCTTGGCATC CTTCGCTTCAATAACCCTA

Fig. 1

Morphological characteristics of mutant NT301 A: wild-type plants at seedling stage; B: mutant NT301 at seedling stage; C: wild-type plants at flowering stage; D: mutant NT301 at flowering stage; E: the transverse section of wild-type leaves; F: the transverse section of NT301 leaves. Bar: 1 cm (A, B); 5 cm (C, D); 200 μm (E, F). p: palisade parenchyma; s: spongy parenchyma; vb: vascular bundle."

Table 1

Chi-square tests of wild type and mutant plants of F2 and F2:3 generation in crosses"

杂交组合
Cross
世代Generation 单株或株系数目No. of plants or lines 卡方测验Chi-square tests
总计
Total
野生型
Wild type
分离
Segregation
突变体
Mutant
期望比
Expected ratio
卡方值
χ2
P
P-value
KF1×NT301 F1 2 2 0 0
F2 451 430 0 21 15:1 0.50 0.48
F2:3 lines 182 88 94 7:8 0.15 0.70
KF35×NT301
F1 2 2 0 0
F2 362 342 0 20 15:1 0.06 0.80
F2:3 lines 176 87 89 7:8 0.44 0.51

Fig. 2

Mapping of two pairs of candidate genes of mutant NT301 A: mapping of rl1 on chromosome 18; B: fine mapping of rl2 on chromosome 8."

Table 2

Quality control of chip experiment"

样品名称
Sample name
背景值
Background value
BioB检出情况
BioB detection status
Beta-actin
3°/5°*
GAPDH
3°/5°*
检出率
Detection rate (%)*
1-1 32.67 + 53.18
1-2 32.57 + 53.01
1-3 35.58 + 51.37
2-1 32.49 + 49.75
2-2 33.40 + 50.43
2-3 31.90 + 50.23

Fig. 3

Cluster figure of differentially expressed genes in mutant NT301 and wild type The horizontal axis represents the sample names and clustering results of the samples, while the vertical axis represents the differentially expressed genes and clustering results of the genes. S1 represents the mutant, and S2 represents the wild type, three times repeat. Different rows represent different genes. Color represents the relative expression level of genes in the samples."

Fig. 4

KEGG enrichment map of differentially expressed genes A: the enrichment of upregulated genes in the KEGG; B: the enrichment of downregulated genes in the KEGG. The figure shows that the -log10 P is greater, the pathway is more significant. The horizontal axis represents the enrichment value, and the vertical axis represents the pathway of enrichment. The size of the circle indicates the number of genes."

Table 3

Annotation of rl2 candidate genes"

序号
No.
基因名称
Gene name
起始-终止位置Start-Stop (bp) 注释信息
Annotation
1 Glyma.08G332000 44937110-44943950 S-腺苷-L-蛋氨酸依赖性甲基转移酶超家族蛋白S-adenosyl-L-methionine-dependent
2 Glyma.08G332100 44947629-44951967 ABC-2 型转运蛋白家族ABC-2 type transporter family protein
3 Glyma.08G332200 44955377-44958957
4 Glyma.08G332300 44964341-44968328 RING/U-box超家族蛋白RING/U-box superfamily protein
5 Glyma.08G332400 44969692-44971581 丝氨酸蛋白相关Serine-rich protein-related
6 Glyma.08G332500 44972649-44974052 UDP 糖基转移酶超家族蛋白UDP-glycosyltransferase superfamily protein
7 Glyma.08G332600 44975232-44979003 胚胎缺陷1303 Embryo defective 1303
8 Glyma.08G332700 44980398-44987729 WW 结构域蛋白WW domain-containing protein
9 Glyma.08G332800 44992809-44997458 钙调神经磷酸酶B Calcineurin B-like 3
10 Glyma.08G332900 44997823-45000952 热激蛋白81.4 Heat Shock Protein 81.4
11 Glyma.08G333000 45003016-45005379 类FKBP肽基脯氨酰顺反异构酶FKBP-like peptidyl-prolyl cis-trans isomerase
12 Glyma.08G333100 45006829-45012886 类Got1/Sft2维管转运蛋白家族Got1/Sft2-like vescicle transport protein family
13 Glyma.08G333200 45024206-45028194 富亮氨酸类受体蛋白激酶家族Leucine-rich receptor-like protein kinase family
14 Glyma.08G333300 45033130-45043479 类驱动蛋白1 Kinesin-like protein 1
15 Glyma.08G333400 45064017-45071298 类尿苷激酶4 Uridine kinase-like 4

Fig. 5

Relative expression level of genes in the mapping interval of chromosome 8 A: the semi quantitative PCR analysis of genes in the mapping interval of chromosome 8; B: the quantitative RT-PCR analysis of genes in the mapping interval of chromosome 8. The red box indicates the most differentially expressed gene between wild type and mutant. The significant test was carried out by the student’s t-test (**: P ≤ 0.01). The error bars indicate the SDs (n = 3)."

Fig. S1

Clustering analysis of amino acid sequences of candidate genes within the mapping intervals on chromosomes 18 and 8 in the mutant NT301 The red box indicates the most differentially expressed gene Glyma.08G332500 on chromosome 8 and its homologous gene Glyma.18G085800 on chromosome 18."

[1] 吕慧颖, 王道文, 葛毅强, 魏珣, 邓向东, 杨维才, 田志喜. 大豆育种行业创新动态. 植物遗传资源学报, 2018, 19: 464-467.
doi: 10.13430/j.cnki.jpgr.2018.03.011
Lyu H Y, Wang D W, Ge Y Q, Wei X, Deng X D, Yang W C, Tian Z X. Innovation of soybean breeding industry. J Plant Genet Resour, 2018, 19: 464-467. (in Chinese with English abstract)
[2] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 我国大豆分子设计育种成果与展望. 中国科学院院刊, 2018, 33: 915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018, 33: 915-922. (in Chinese with English abstract)
[3] Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Spotted-leaf mutants of rice (Oryza sativa). Rice Sci, 2010, 17: 247-256.
doi: 10.1016/S1672-6308(09)60024-X
[4] Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605-619.
doi: 10.1007/s00438-008-0337-2 pmid: 18357468
[5] Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell, 1997, 89: 25-31.
doi: 10.1016/s0092-8674(00)80179-8 pmid: 9094711
[6] Dietrich R A, Richberg M H, Schmidt R, Gean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685-694.
pmid: 9054508
[7] Tang X, Xie M, Kim Y J, Zhou J, Klessig D F, Martin G B. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11: 15-29.
doi: 10.1105/tpc.11.1.15 pmid: 9878629
[8] Yamanouchi U, Yano M, Lin H, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530-7535.
doi: 10.1073/pnas.112209199 pmid: 12032317
[9] Wang Y, Liu M, Ge D, Bhat J A, Li Y, Kong J, Liu K, Zhao T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). Plant J, 2020, 104: 1315-1333.
doi: 10.1111/tpj.v104.5
[10] Ma J, Yang S, Wang D, Tang K, Feng X. Genetic mapping of a light-dependent lesion mimic mutant reveals the function of coproporphyrinogen iii oxidase homolog in soybean. Front Plant Sci, 2020, 11: e557.
[11] Stephens P A, Barwale U B, Nickell C D, Widholm J M. A cytoplasmically inherited, wrinkled-leaf mutant in soybean. J Hered, 1991, 82: 71-73.
doi: 10.1093/jhered/82.1.71
[12] Wilcox J R, Abney T S. Inheritance of a narrow, rugose-leaf mutant in Glycine max. J Hered, 1991, 82: 421-423.
doi: 10.1093/oxfordjournals.jhered.a111116
[13] 聂智星, 代金英, 吉家正, 陈薇, 赵团结. 大豆叶突变体 abl-CT 的发掘与特性分析. 江苏农业科学, 2013, 41(1): 86-88.
Nie Z X, Dai J Y, Ji J Z, Chen W, Zhao T J. Identification and characterization of soybean leaf mutant abl-CT. Jiangsu Agric Sci, 2013, 41(1): 86-88. (in Chinese)
[14] Singh S P, Molina A. Inheritance of crippled trifoliolate leaves occurring in interracial crosses of common bean and its relationship with hybrid dwarfism. J Hered, 1996, 87: 464-469.
doi: 10.1093/oxfordjournals.jhered.a023039
[15] Song X, Wei H, Cheng W, Yang S, Zhao Y, Li X, Luo D, Zhang H, Feng X. Development of INDEL markers for genetic mapping based on whole genome resequencing in soybean. G3: Genes Genom Genet, 2015, 5: 2793-2799.
[16] Ochar K, Bo-Hong S U, Zhou M M, Liu Z X, Gao H W, Flamlom S, Qiu L J. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. J Integr Agric, 2022, 21: 3524-3539.
doi: 10.1016/j.jia.2022.08.095
[17] 孙红正, 葛颂. 重复基因的进化: 回顾与进展. 植物学报, 2010, 45: 13-22.
doi: 10.3969/j.issn.1674-3466.2010.01.002
Sun H Z, Ge S. Review the evolution of duplicate genes. Chin Bull Bot, 2010, 45: 13-22. (in Chinese with English abstract)
[18] Schmutz J, Cannon S B, Schlueter J, Ma J, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670
[19] Wang Y, Chen W, Zhang Y, Liu M, Kong J, Yu Z, Jaffer A M, Gai J, Zhao T. Identification of two duplicated loci controlling a disease-like rugose leaf phenotype in soybean. Crop Sci, 2016, 56: 1611-1618.
doi: 10.2135/cropsci2015.09.0580
[20] Song Q J, Jia G F, Zhu Y L, Grant D, Nelson R T, Hwang E Y, Hyten D L, Cregan P B. Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_ 1.0) in soybean. Crop Sci, 2010, 50: 1950-1960.
doi: 10.2135/cropsci2009.10.0607
[21] 李强, 万建民. SSRHunter, 一个本地化的SSR位点搜索软件的开发. 遗传, 2005, 27: 808-810.
Li Q, Wan J M. SSRHunter, development of a local searching software for SSR sites. Hereditas, 2005, 27: 808-810. (in Chinese with English abstract)
[22] Lazar G, Goodman H M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 472-476.
doi: 10.1073/pnas.0509463102
[23] Du J, Tian Z, Sui Y, Zhao M, Song Q, Cannon S B, Cregan P, Ma J. Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. Plant Cell, 2012, 24: 21-32.
doi: 10.1105/tpc.111.092759
[24] Lohnes D G, Specht J E, Cregan P B. Evidence for homoeologous linkage groups in the soybean. Crop Sci, 1997, 37: 254-257.
doi: 10.2135/cropsci1997.0011183X003700010045x
[25] Chao W S, Liu V, Thomson W W, Platt K, Walling L L. The impact of chlorophyll-retention mutations, d1d2and cyt-G1, during embryogeny in soybean. Plant Physiol, 1995, 107: 253-262.
pmid: 12228359
[26] Fang C, Li C, Li W, Wang Z, Zhou Z, Shen Y, Tian Z. Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J, 2014, 77: 700-712.
doi: 10.1111/tpj.2014.77.issue-5
[27] Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet, 2010, 11: 97-108.
doi: 10.1038/nrg2689 pmid: 20051986
[28] Ji Q, Zhang L S, Wang Y F, Wang J. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa. J Shanghai Univ, 2009, 13: 174-182.
doi: 10.1007/s11741-009-0216-3
[29] Wang Y P, Wang X Y, Paterson A H. Genome and gene duplications and gene expression divergence: a view from plants. Ann NY Acad Sci, 2012, 1256: 1-14.
doi: 10.1111/j.1749-6632.2011.06384.x pmid: 22257007
[30] Tian Z X, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habitin soybean. Proc Natl Acad Sci USA, 2010, 107: 8563-8568.
doi: 10.1073/pnas.1000088107
[31] Chen K, Yang H, Peng Y, Liu D, Zhang J, Zhao Z, Wu L, Lin T, Bai L. Genomic analyses provide insights into the polyploidization-driven herbicide adaptation in Leptochloa weeds. Plant Biotechnol J, 2023, 21: 1642-1658.
doi: 10.1111/pbi.14065 pmid: 37154437
[32] Schommer C, Palatnik J F, Aggarwal P, Chetelat A, Cubas A, Farmer E E, Nath U, Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol, 2008, 6: e230.
doi: 10.1371/journal.pbio.0060230
[33] Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce M R, Micol J L. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One, 2013, 8: e53378.
doi: 10.1371/journal.pone.0053378
[34] Carland F M, McHale N A. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development, 1996, 122: 1811-1819.
doi: 10.1242/dev.122.6.1811 pmid: 8674420
[35] Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, Lijsebettensa M V. The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell, 2006, 18: 852-866.
doi: 10.1105/tpc.105.040568
[1] ZHANG Hong-Mei, ZHANG Wei, WANG Qiong, JIA Qian-Ru, MENG Shan, XIONG Ya-Wen, LIU Xiao-Qing, CHEN Xin, CHEN Hua-Tao. Genome-wide association study for vitamin E content in soybean (Glycine max L.) seed [J]. Acta Agronomica Sinica, 2024, 50(5): 1223-1235.
[2] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad Yousof, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[3] WANG Qiong, ZHU Yu-Xiang, ZHOU Mi-Mi, ZHANG Wei, ZHANG Hong-Mei, CEHN Xin, CEHN Hua-Tao, CUI Xiao-Yan. Genome-wide association analysis and candidate genes predication of leaf characteristics traits in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2024, 50(3): 623-632.
[4] LIU Wei, WANG Yu-Bin, LI Wei, ZHANG Li-Feng, XU Ran, WANG Cai-Jie, ZHANG Yan-Wei. Overexpression of soybean isopropyl malate dehydrogenase gene GmIPMDH promotes flowering and growth [J]. Acta Agronomica Sinica, 2024, 50(3): 613-622.
[5] SONG Jian, XIONG Ya-Jun, CHEN Yi-Jie, XU Rui-Xin, LIU Kang-Lin, GUO Qing-Yuan, HONG Hui-Long, GAO Hua-Wei, GU Yong-Zhe, ZHANG Li-Juan, GUO Yong, YAN Zhe, LIU Zhang-Xiong, GUAN Rong-Xia, LI Ying-Hui, WANG Xiao-Bo, GUO Bing-Fu, SUN Ru-Jian, YAN Long, WANG Hao-Rang, JI Yue-Mei, CHANG Ru-Zhen, WANG Jun, QIU Li-Juan. Genetic analysis of seed coat and flower color based on a soybean nested association mapping population [J]. Acta Agronomica Sinica, 2024, 50(3): 556-575.
[6] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[7] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[8] SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109.
[9] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[10] LI Gang, ZHOU Yan-Chen, XIONG Ya-Jun, CHEN Yi-Jie, GUO Qing-Yuan, GAO Jie, SONG Jian, WANG Jun, LI Ying-Hui, QIU Li-Juan. Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes [J]. Acta Agronomica Sinica, 2023, 49(8): 2051-2063.
[11] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[12] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[13] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[14] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[15] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .