Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 969-980.doi: 10.3724/SP.J.1006.2024.34115

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.)

LU Qing(), LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2023-07-06 Accepted:2023-10-23 Online:2024-04-12 Published:2023-11-09
  • Contact: * E-mail: lishaoxiong@gdaas.cn
  • Supported by:
    Special Funds for the Revitalization of Agriculture through Seed Industry under the Provincial Rural Revitalization Strategy(2022-NPY-00-022);Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2020B020219003);Guangdong Provincial Key Research and Development Program-Modern Seed Industry(2022B0202060004);China Agriculture Research System of MOF and MARA (Peanut, CARS-13);Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202104TD);Project of Collaborative Innovation Center of GDAAS(XTXM202203)

Abstract:

Oil content is a crucial trait for the yield of oil per unit area in peanut. This trait is controlled by multiple minor genes, and its avaliable tightly linked markers are very limited, resulting in low breeding accuracy in traditional molecular marker assisted selection. Genomic selection (GS), as a new breeding method, could achieve early prediction of quantitative traits. Near infrared ray (NIR) technology can non-destructively detect seed quality traits, such as oil content. By combining the advantages of the two breeding technologies, we have established a breeding technology that combined GS and NIR for breeding peanut oil content, and explored the factors that affected the accuracy of GS for peanut oil content. This study lays a theoretical foundation for peanut molecular breeding. Here, a total of 216 recombinant inbred lines were used as a training population. The F2 (139), F3 (464), and F4 (505) were used to construct the breeding populations. Genotyping was carried out using the self-developed “PeanutGBTS40K” liquid chip. The breeding application of oil content was conducted using a GS and NIR jointed breeding technology, and evaluated its breeding effects. The results showed that after genotyping the training population, a total of 30,355 high-quality SNPs were obtained, and used for 11 GS models selection analyses. The rrBLUP model showed the highest accuracy, followed by randomforest and svmrbf. The GS prediction accuracy of F2, F3, and F4 was 0.116, 0.128, and 0.119, respectively, using recombinant inbred lines as the training population. Accordingly, the prediction accuracy was 0.116, 0.131, and 0.160, respectively, using a superimposed training population. Compared with the GS, the GS-NIR can improve oil content by 1.8%, 2.7%, and 3.4% for each generation. Compared with the NIR, there was no significant difference (0.1%, 0.06%, and 0.07%). Compared with the GS, the NIR can significantly improve oil content by 1.7%, 2.6%, and 3.3% for each generation. Through the combined technologies, compared to F2, the oil content of F3 and F4 increased by 1.2% and 1.0%, respectively. Finally, a total of 16 improved lines were obtained in F4, of which 10 lines had oil content ≥ 55.0%. Among them, two lines (SF4_201 and SF4_379) had a theoretical yield increase of 7.0% and 11.1%, respectively, compared to the control variety. This study suggested that oil content could be effectively improved through GS combined with NIR in peanut.

Key words: peanut (Arachis hypogaea L.), oil content, genomic selection, near infrared ray, genomic breeding value

Fig. 1

Phenotypic distribution of parents and their 216 lines of GS training population A: oil content of high oil material 93057 and low oil material Y410; B: oil content distribution of 216 recombinant inbred lines in four years; C: the Shapiro-Wilk normality test of oil content distribution in four years. *** represent P < 0.001."

Fig. 2

Number of SNPs in each chromosome and principal component analysis of training population A: the distribution of SNP on 20 chromosomes; B: the principal component analysis of training population."

Fig. 3

Comparison of different genomic selection models and analysis of factors influencing accuracy A: comparison of accuracy among 11 genomic selection models; B: comparison of accuracy for different sample sizes of training populations; C: comparison of accuracy for different number of SNP markers."

Fig. 4

Predicted breeding values for oil content and comparison of different decision-making methods in GS breeding program A: GS-NIR joint breeding strategy; B-D: correlation analysis between predicted and observed values of F2, F3, and F4 using RILs as the training population; E-G: correlation analysis between predicted and observed values of F2, F3, and F4 using RILs, RIL+F2 and RIL+F2+F3 as the training population, respectively; H: comparison of GS, NIR and GS-NIR joint breeding methods for oil content in different generations. ns represents P > 0.05; *, **, and *** represent significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 5

GS-NIR joint breeding strategy for peanut oil content and improved line evaluation A: comparison of oil content among different generations; B: evaluation of 16 improved lines; C: GS-NIR joint breeding strategy for peanut oil content improvement. ns represents P > 0.05; * and *** represent significant difference at the 0.05 and 0.001 probability levels, respectively."

[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020115
[2] 廖伯寿. 中国花生油脂产业竞争力浅析. 花生学报, 2003, 32(增刊1): 11-15.
Liao B S. Analysis on the competitiveness of peanut oil industry in China. J Peanut Sci, 2003, 32(S1): 11-15. (in Chinese with English abstract)
[3] 宋江春, 李拴柱, 王建玉, 张秀阁, 朱雪峰, 乔建礼, 向臻. 我国高油花生育种研究进展. 作物杂志, 2018, (3): 25-31.
Song J C, Li S Z, Wang J Y, Zhang X G, Zhu X F, Qiao J L, Xiang Z. Advances in breeding of high oil peanut in China. Crops, 2018, (3): 25-31. (in Chinese with English abstract)
[4] 鲁清, 李少雄, 陈小平, 周桂元, 洪彦彬, 李海芬, 梁炫强. 我国南方产区花生育种现状、存在问题及育种建议. 中国油料作物学报, 2017, 39: 556-566.
Lu Q, Li S X, Chen X P, Zhou G Y, Hong Y B, Li H F, Liang X Q. Current situation, problems and suggestions of peanut breeding in southern China. Chin J Oil Crop Sci, 2017, 39: 556-566. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2017.04.019
[5] 李少雄, 洪彦彬, 陈小平, 梁炫强. 广东花生生产、育种和种业现状与发展对策. 广东农业科学, 2020, 47(11): 78-83.
Li S X, Hong Y B, Chen X P, Liang X Q. Present situation and development strategies of peanut production, breeding and seed industry in Guangdong. Guangdong Agric Sci, 2020, 47(11): 78-83. (in Chinese with English abstract)
[6] 杜普旋, 刘军, 陈荣华, 吴柔贤, 范呈根, 郭丹丹, 鲁清. 广东省花生种质资源收集与鉴定评价. 植物遗传资源学报, 2023, 24: 671-679.
doi: 10.13430/j.cnki.jpgr.20221010001
Du P X, Liu J, Chen R H, Wu R X, Fan C G, Guo D D, Lu Q. Systematic collection, identification and evaluation of peanut germplasm resources in Guangdong province. J Plant Genet Resour, 2023, 24: 671-679. (in Chinese with English abstract)
[7] 姜慧芳, 段乃雄, 任小平, 孙大容. 花生种质资源的性状鉴定及综合评价进展. 花生科技, 1999, 38(增刊1): 144-147.
Jiang H F, Duan N X, Ren X P, Sun D R. Progress in character identification and comprehensive evaluation of peanut germplasm resources. Peanut Sci Technol, 1999, 38(S1): 144-147. (in Chinese with English abstract)
[8] 姜慧芳, 任小平, 王圣玉, 黄家权, 雷永, 廖伯寿. 野生花生高油基因资源的发掘与鉴定. 中国油料作物学报, 2010, 32: 30-34.
Jiang H F, Ren X P, Wang S Y, Huang J Q, Lei Y, Liao B S. Identification and evaluation of high oil content in wild Arachis species. Chin J Oil Crop Sci, 2010, 32: 30-34. (in Chinese with English abstract)
[9] 苗利娟, 张新友, 黄冰艳, 董文召, 汤丰收, 刘娟, 张俊, 刘华, 齐飞艳. 河南省花生农家品种资源农艺和品质性状分析. 植物遗传资源学报, 2016, 17: 854-860.
doi: 10.13430/j.cnki.jpgr.2016.05.009
Miao L J, Zhang X Y, Huang B Y, Dong W Z, Tang F S, Liu J, Zhang J, Liu H, Qi F Y. Evaluation of agronomic and quality traits in peanut (Aarchis hypogaea L.) landraces of Henan province. J Plant Genet Resour, 2016, 17: 854-860. (in Chinese with English abstract)
[10] Moose S P, Mumm R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol, 2008, 147: 969-977.
doi: 10.1104/pp.108.118232 pmid: 18612074
[11] Heffner E L, Sorrells M E, Jannink J L. Genomic selection for crop improvement. Crop Sci, 2009, 49: 1-12.
doi: 10.2135/cropsci2008.08.0512
[12] Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998, 148: 1353-1365.
doi: 10.1093/genetics/148.3.1353 pmid: 9539448
[13] Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157: 1819-1829.
doi: 10.1093/genetics/157.4.1819 pmid: 11290733
[14] Bhat J A, Ali S, Salgotra R K, Mir Z A, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh P K, Singh G P, Prabhu K V. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet, 2016, 7: 221.
[15] Wong C K, Bernardo R. Genome wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet, 2008, 116: 815-824.
doi: 10.1007/s00122-008-0715-5 pmid: 18219476
[16] Shikha M, Kanika A, Rao A R, Mallikarjuna M G, Gupta H S, Nepolean T. Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci, 2017, 8: 550.
doi: 10.3389/fpls.2017.00550 pmid: 28484471
[17] Guo P, Zhu B, Xu L, Niu H, Wang Z, Guan L, Liang Y, Ni H, Guo Y, Chen Y, Zhang L, Gao X, Gao H, Li J. Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes. PLoS One, 2017, 12: e0179885.
doi: 10.1371/journal.pone.0179885
[18] Yang R, Xu Z, Wang Q, Zhu D, Bian C, Ren J, Huang Z, Zhu X, Tian Z, Wang Y, Jiang Z, Zhao Y, Zhang D, Li N, Hu X. Genome-wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing. Genet Sel Evol, 2021, 53: 82.
doi: 10.1186/s12711-021-00672-9
[19] Ros-Freixedes R, Johnsson M, Whalen A, Chen C Y, Valente B D, Herring W O, Gorjanc G, Hickey J M. Genomic prediction with whole-genome sequence data in intensely selected pig lines. Genet Sel Evol, 2022, 54: 65.
doi: 10.1186/s12711-022-00756-0 pmid: 36153511
[20] Toda Y, Wakatsuki H, Aoike T, Kajiya-Kanegae H, Yamasaki M, Yoshioka T, Ebana K, Hayashi T, Nakagawa H, Hasegawa T, Iwata H. Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models. PLoS One, 2020, 15: e0233951.
doi: 10.1371/journal.pone.0233951
[21] Bartholomé J, Prakash P T, Cobb J N. Genomic prediction: progress and perspectives for rice improvement. Methods Mol Biol, 2022, 2467: 569-617.
doi: 10.1007/978-1-0716-2205-6_21 pmid: 35451791
[22] Atanda S A, Steffes J, Lan Y, Al Bari M A, Kim J H, Morales M, Johnson J P, Saludares R, Worral H, Piche L, Ross A, Grusak M, Coyne C, McGee R, Rao J, Bandillo N. Multi-trait genomic prediction improves selection accuracy for enhancing seed mineral concentrations in pea. Plant Genome, 2022, 15: e20260.
doi: 10.1002/tpg2.v15.4
[23] Aono A H, Francisco F R, Souza L M, Gonçalves P S, Scaloppi Junior E J, Le Guen V, Fritsche-Neto R, Gorjanc G, Quiles M G, de Souza A P. A divide-and-conquer approach for genomic prediction in rubber tree using machine learning. Sci Rep, 2022, 12: 18023.
doi: 10.1038/s41598-022-20416-z pmid: 36289298
[24] Freeman J S, Slavov G T, Butler J B, Frickey T, Graham N J, Klápště J, Lee J, Telfer E J, Wilcox P, Dungey H S. High density linkage maps, genetic architecture, and genomic prediction of growth and wood properties in Pinus radiata. BMC Genomics, 2022, 23: 731.
doi: 10.1186/s12864-022-08950-6 pmid: 36307760
[25] Misztal I, Aguilar I, Lourenco D, Ma L, Steibel J P, Toro M. Emerging issues in genomic selection. J Anim Sci, 2021, 99: skab092.
doi: 10.1093/jas/skab092
[26] 纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁含油量近红外模型的构建及其应用. 中国油料作物学报, 2022, 44: 1089-1097.
doi: 10.19802/j.issn.1007-9084.2021205
Ji H C, Qiu X C, Liu W H, Hu C L, Kong M, Hu X H, Huang J B, Yang X, Tang Y Y, Zhang X J, Wang J S, Qiao L X. Construction and application of near infrared ray model for oil content prediction in peanut kernel. Chin J Oil Crop Sci, 2022, 44: 1089-1097. (in Chinese with English abstract)
[27] Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci USA, 2016, 113: 6785-6790.
doi: 10.1073/pnas.1600899113 pmid: 27247390
[28] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimarães P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016, 48: 438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[29] Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney R K, Chen X, Liang X. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci, 2018, 9: 604.
doi: 10.3389/fpls.2018.00604
[30] Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. Gigascience, 2018, 7: giy066.
[31] Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique K H M, Liu Z J, Paterson A H, Varshney R K, Liang X. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019, 12: 920-934.
doi: 10.1016/j.molp.2019.03.005
[32] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[33] Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51: 865-876.
doi: 10.1038/s41588-019-0402-2 pmid: 31043757
[34] Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya H D, Vishwakarma M K, Leal-Bertioli S, Liang X, Bertioli D J, Guo B, Jackson S A, Ozias-Akins P, Varshney R K. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017, 7: 40577.
doi: 10.1038/srep40577
[35] Zhao C, Qiu J, Agarwal G, Wang J, Ren X, Xia H, Guo B, Ma C, Wan S, Bertioli D J, Varshney R K, Pandey M K, Wang X. Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci, 2017, 8: 1209.
doi: 10.3389/fpls.2017.01209
[36] Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, Lan H, Liu H, Li X, Wen S, Zhou G, Varshney R K, Jiang H, Chen X, Liang X. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2019, 20: 799.
doi: 10.1186/s12864-019-6148-5
[37] Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by- sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6: e19379.
doi: 10.1371/journal.pone.0019379
[38] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[39] Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J A, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37-49.
doi: 10.1007/s11032-019-0940-4
[40] Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 2011, 4: 250-255.
doi: 10.3835/plantgenome2011.08.0024
[41] Yang J, Lee S H, Goddard M E, Visscher P M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88: 76-82.
doi: 10.1016/j.ajhg.2010.11.011 pmid: 21167468
[42] Karatzoglou A, Smola A, Hornik K, Zeileis A. Kernlab: an S4 package for kernel methods in R. J Statist Software, 2004, 11: 721-729.
[43] Breiman L. Random forests. Mach Learn, 2001, 45: 5-32.
doi: 10.1023/A:1010933404324
[44] Perez P, de los Campos G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198: 483-495.
doi: 10.1534/genetics.114.164442 pmid: 25009151
[45] 何红中, 周瑞洲. 中国作物育种技术发展的回望与思考. 科学, 2016, 68(4): 32-36.
He H Z, Zhou R Z. Reflecting on the development of crop breeding technology in China. Science, 2016, 68(4): 32-36. (in Chinese with English abstract)
[46] 刘忠松. 作物遗传育种研究进展: V.表型选择与基因型选择. 作物研究, 2014, 28: 780-784.
Liu Z S. Research progress in crop genetics and breeding: V.Phenotypic selection and genotype selection. Crop Res, 2014, 28: 780-784. (in Chinese with English abstract)
[47] Bernardo R. Testcross additive and dominance effects in best linear unbiased prediction of maize single-cross performance. Theor Appl Genet, 1996, 93: 1098-1102.
doi: 10.1007/BF00230131 pmid: 24162487
[48] Stuber C W, Goodman M M, Moll R H. Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci, 1982, 22: 737-740.
doi: 10.2135/cropsci1982.0011183X002200040010x
[49] Bernardo R, Yu J M. Prospects for genome wide selection for quantitative traits in maize. Crop Sci, 2007, 47: 1082-1090.
doi: 10.2135/cropsci2006.11.0690
[50] Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A. More on the efficiency of marker-assisted selection. Theor Appl Genet, 1997, 95: 1181-1189.
doi: 10.1007/s001220050679
[51] Xu Y, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci, 2008, 48: 391-407.
doi: 10.2135/cropsci2007.04.0191
[52] 江建华, 肖美华, 王晓帅, 于欢欢, 管叔琪, 倪皖莉. 花生含油量研究进展. 中国农学通报, 2012, 28(33): 1-6.
Jiang J H, Xiao M H, Wang X S, Yu H H, Guan S Q, Ni W L. Recent progress in oil content of Arachis hypogaea L. Chin Agric Sci Bull, 2012, 28(33): 1-6. (in Chinese with English abstract)
[53] 马岩松, 刘章雄, 文自翔, 魏淑红, 杨春明, 王会才, 杨春燕, 卢为国, 徐冉, 张万海, 吴纪安, 胡国华, 栾晓燕, 付亚书, 王曙明, 韩天富, 张孟臣, 张磊, 苑保军, 郭勇, Reif J C, 江勇, 李文滨, 王德春, 邱丽娟. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响. 作物学报, 2018, 44: 43-52.
Ma Y S, Liu Z X, Wen Z X, Wei S H, Yang C M, Wang H C, Yang C Y, Lu W G, Xu R, Zhang W H, Wu J A, Hu G H, Luan X Y, Fu Y S, Wang S M, Han T F, Zhang M C, Zhang L, Yuan B J, Guo Y, Reif J C, Jiang Y, Li W B, Wang D C, Qiu L J. Effect of population structure on prediction accuracy of soybean 100-seed weight by genomic selection. Acta Agron Sin, 2018, 44: 43-52. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00043
[54] 唐友, 郑萍, 王嘉博, 张继成. 对比Bayesian B等多种方法的大豆全基因组选择应用研究. 大豆科学, 2018, 37: 353-358.
Tang Y, Zheng P, Wang J B, Zhang J C. Application research for soybean genomics selection by comparing Bayesian B and other methods. Soybean Sci, 2018, 37: 353-358. (in Chinese with English abstract)
[55] 孙强, 任姣姣, 徐晓明, 李宗泽, 黄博文, 陈占辉, 吴鹏昊. 玉米株高和穗位高QTL定位和全基因组选择探究. 玉米科学, 2022, 30(4): 40-47.
Sun Q, Ren J J, Xu X M, Li Z Z, Huang B W, Chen Z H, Wu P H. QTL mapping and genomic selection for plant height and ear height in maize. J Maize Sci, 2022, 30(4): 40-47. (in Chinese with English abstract)
[56] 许加波, 吴鹏昊, 黄博文, 陈占辉, 马月虹, 任姣姣. 利用F2:3家系来源单倍体定位玉米雄穗相关性状QTL及全基因组选择. 作物学报, 2023, 49: 622-633.
doi: 10.3724/SP.J.1006.2023.23024
Xu J B, Wu P H, Huang B W, Chen Z H, Ma Y H, Ren J J. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids. Acta Agron Sin, 2023, 49: 622-633. (in Chinese with English abstract)
[57] 邱树青, 陆青, 喻辉辉, 倪雪梅, 张耕耘, 何航, 谢为博, 周发松. 水稻全基因组选择育种技术平台构建与应用. 生命科学, 2018, 30: 1120-1128.
Qiu S Q, Lu Q, Yu H H, Nix M, Zhang G Y, He H, Xie W B, Zhou F S. The development and application of rice whole genome selection breeding platform. Chin Bull Life Sci, 2018, 30: 1120-1128. (in Chinese with English abstract)
[58] Wang X, Yang Z, Xu C. A comparison of genomic selection methods for breeding value prediction. Sci Bull, 2015, 60: 925-935.
doi: 10.1007/s11434-015-0791-2
[59] Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci, 2009, 92: 433-443. (in Chinese with English abstract)
doi: 10.3168/jds.2008-1646 pmid: 19164653
[60] Habier D, Fernando R L, Dekkers J C. Genomic selection using low-density marker panels. Genetics, 2009, 182: 343-353.
doi: 10.1534/genetics.108.100289 pmid: 19299339
[61] Vinayan M T, Seetharam K, Babu R, Zaidi P H, Blummel M, Nair S K. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Sci Rep, 2021, 11: 686.
doi: 10.1038/s41598-020-80118-2 pmid: 33436870
[62] Michel S, Kummer C, Gallee M, Hellinger J, Ametz C, Akgöl B, Epure D, Güngör H, Löschenberger F, Buerstmayr H. Improving the baking quality of bread wheat by genomic selection in early generations. Theor Appl Genet, 2018, 131: 477-493.
doi: 10.1007/s00122-017-2998-x pmid: 29063161
[63] Kumar S, Chagné D, Bink M C, Volz R K, Whitworth C, Carlisle C. Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One, 2012, 7: e36674.
doi: 10.1371/journal.pone.0036674
[64] Rao Y, Xiang B, Zhou X, Wang Z, Xie S, Xu J. Quantitative and qualitative determination of acid value of peanut oil using near-infrared spectrometry. J Food Eng, 2009, 93: 249-252.
doi: 10.1016/j.jfoodeng.2009.01.023
[65] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立. 作物学报, 2023, 49: 2498-2504.
doi: 10.3724/SP.J.1006.2023.24241
Hu M L, Zhi C Y, Xue X M, Wu J, Wang J, Yan L Y, Wang X, Chen Y N, Kang Y P, Wang Z H, Huai D X, Jiang H F, Lei Y, Liao B S. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut. Acta Agron Sin, 2023, 49: 2498-2504. (in Chinese with English abstract)
[66] Eynard S E, Croiseau P, Laloë D, Fritz S, Calus M P L, Restoux G. Which individuals to choose to update the reference population? Minimizing the loss of genetic diversity in animal genomic selection programs. G3: Genes Genom Genet, 2018, 8: 113-121.
[1] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[2] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[3] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[4] ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, LI Xiong-Cai, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, HONG Yan-Bin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Analysis of genetic model of sucrose content in peanut [J]. Acta Agronomica Sinica, 2024, 50(1): 32-41.
[5] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[6] MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572.
[7] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[8] XU Jia-Bo, WU Peng-Hao, HUANG Bo-Wen, CHEN Zhan-Hui, MA Yue-Hong, REN Jiao-Jiao. QTL locating and genomic selection for tassel-related traits using F2:3 lineage haploids [J]. Acta Agronomica Sinica, 2023, 49(3): 622-633.
[9] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[10] GUO Jian-Bin, CHENG Liang-Qiang, LI Wei-Tao, LIU Nian, LUO Huai-Yong, DING Ying-Bin, YU Bo-Lun, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut [J]. Acta Agronomica Sinica, 2023, 49(10): 2698-2704.
[11] YAN Weikai. A critical review on the principles and procedures for cultivar development and evaluation [J]. Acta Agronomica Sinica, 2022, 48(9): 2137-2154.
[12] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] XU Hua-Xiang, LU Geng, GUO Xi, LI Yuan-Yuan, ZHANG Tao. Cloning and functional study of lysophosphatidic acid acyltransferase gene in Perilla frutescens [J]. Acta Agronomica Sinica, 2022, 48(10): 2494-2504.
[15] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .