Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 273-284.doi: 10.3724/SP.J.1006.2025.43010

• RESEARCH NOTES • Previous Articles    

Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region

QIAN Yu-Ping1(), SU Bing-Bing2, GAO Ji-Xing1, RUAN Fen-Hua1, LI Ya-Wei3,*(), MAO Lin-Chun1,4   

  1. 1Pu’er Tea College, West Yunnan University of Applied Technology, Pu’er 665000, Yunnan, China
    2School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    3Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    4College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, Zhejiang, China
  • Received:2024-03-12 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-10
  • Contact: *E-mail: liyaweikl@163.com
  • Supported by:
    Pu’er Tea College, Western Yunnan University of Applied Technology(2023YJXM04);Joint Project of Local Universities in Yunnan Province(202301BA070001-066)

Abstract:

This study aimed to investigate the effects of corn and soybean belt intercropping on soil physicochemical properties and microbial community structure diversity in a karst area. Three planting models were established: corn and soybean intercropping (MSI), corn monocropping (MM), and soybean monocropping (SM). The Biolog-ECO microplate method was used to explore the impacts of these different planting patterns on the metabolic activity, diversity, and soil properties of soil microbial carbon sources, as well as their underlying mechanisms. The results showed that compared to MM and SM, the MSI model significantly increased the soil microbial community richness index (McIntosh index) by 11.90% (P < 0.05) and 58.40% (P < 0.01), respectively, and the AWCD value by 24.50% and 80.10%, respectively. The relative absorbance of carboxylic acids, amino acids, and phenolic acids increased significantly by 34.50%, 63.70%, and 61.80% on average, respectively. The carbon source metabolic fingerprint revealed that the MSI model enhanced the utilization of p-carboxylic acid carbon sources by increasing the metabolic activity of itaconic acid, and improved the utilization of amino acid carbon sources by boosting the metabolic activity of L-phenylalanine, L-threonine, and glycyl-glutamic acid. Additionally, the MSI model increased the utilization of polymer carbon sources via enhanced metabolic activity of Tween 40, Tween 80, and liver sugar. Furthermore, soil SOC under MSI treatment was significantly higher by 8.50% and 72.84% compared to MM and SM, respectively, while NH4+-N and TN contents were significantly increased by 46.70% and 33.30% compared to SM treatment, respectively. Principal component analysis revealed that the two extracted components explained 79.69% of the total variation in carbon source utilization. The overall carbon source metabolic capacity followed the order MSI > MM > SM, with the MSI soil microbial community demonstrating the strongest metabolic utilization of carboxylic acids, amino acids, and polymers. Redundancy analysis indicated that TN (53.50%) and SOC (30.90%) were the two most significant environmental factors influencing carbon source metabolic utilization. TN promoted the metabolic utilization of carboxylic acid and amino acid carbon sources, while SOC enhanced the utilization of amine and phenolic acid carbon sources. The preferential carbon metabolism observed in maize and soybean intercropping was primarily driven by the diversity of microbial community structure, and was further regulated by soil total nitrogen and organic matter content. These findings suggest that the interaction between microbial community structure and soil physicochemical properties may play a key role in the yield improvement and efficiency of soybean and corn intercropping systems.

Key words: maize, soybean, soil microorganism, metabolic activity of carbon source, physical and chemical properties of soil, Biolog-ECO

Fig. 1

Rainfall and average daily temperature at the experimental site during the crop growth period"

Fig. 2

Diagram of field planting patterns MM: maize monoculture; MSI: maize and soybean intercropping; SM: soybean monoculture."

Table 1

Effects of planting patterns on soil physicochemical factors"

种植模式
Cropping pattern
土壤含水量
SWC (%)
pH 土壤温度
ST (℃)
有机质含量
SOC (g kg-1)
NO3--N
(mg kg-1)
NH4+-N
(mg kg-1)
全氮含量
TN (g kg-1)
MSI 25.64±0.01 b 5.83±0.05 b 24.25±0.31 b 33.15±3.23 a 12.82±1.78 b 38.63±4.08 a 0.88±0.04 a
MM 29.32±0.06 a 5.92±0.09 ab 25.13±0.63 b 30.56±2.56 b 4.98±2.72 c 34.40±8.36 ab 0.80±0.05 a
SM 27.06±0.03 ab 6.13±0.16 ab 26.42±0.85 a 19.18±3.28 c 21.23±1.27 a 26.34±4.27 b 0.66±0.04 b

Fig. 3

Average well color development of soil microbial community light absorption value after 168 hours of culture (mean±SD) AWCD value: average well color development. Different lowercase letters represent the average values of the corresponding indicators in different planting patterns, and there are significant differences when Duncan’s method is used for multiple comparison (P < 0.05). Treatments are the same as those given in Fig. 2."

Fig. 4

Effects of planting patterns on the relative absorbance values of six types of carbon source metabolism in soil microbial communities CH: carbohydrates; CA: carboxylic acids; AA: amino acids; PM: polymers; AM: amines; PA: phenolic acids. Treatments are the same as those given in Fig. 2."

Table 2

Relative proportions of metabolic utilization of six types of carbon sources in soil microbial communities under different planting patterns"

种植模式
Cropping pattern
碳水化合物类Carbohydrates 羧酸类
CA
氨基酸类
AA
多聚类
PM
胺类
AM
酚酸类
PA
MSI 27.98±2.20 b 21.19±0.69 a 25.71±0.61 a 16.98±0.28 a 5.07±1.88 a 3.07±0.77 b
MM 39.02±2.35 a 20.91±1.77 a 22.77±2.03 a 12.72±2.20 b 2.96±1.99 a 1.62±0.43 c
SM 29.65±1.54 b 22.37±3.43 a 19.71±3.58 a 16.49±1.04 a 6.80±2.19 a 4.98±0.50 a

Table 3

Principal component analysis of metabolic utilization of six types of carbon sources by soil microbial communities under different planting patterns"

主成分数
Principal component number
特征值
Eigenvalue
方差贡献率
Percentage of variance (%)
累计贡献率
Cumulative (%)
1 3.64 60.75 60.75
2 1.14 18.95 79.69
3 0.84 14.06 93.75
4 0.28 4.74 98.49
5 0.08 1.30 99.78
6 0.01 0.22 100.00

Fig. 5

Principal component analysis of carbon source utilization characteristics of planting patterns PC1: principal component 1; PC2: principal component 2. Abbreviations are the same as those given in Fig. 4."

Table 4

Main component score coefficient and comprehensive score of soil microbial community’s carbon source utilization characteristics in different planting patterns"

处理
Treatment
PC1 PC2 综合得分
Synthesis score
排名
Ranking
MSI 2.27 0.42 1.46 1
MM -0.26 -1.13 -0.37 2
SM -2.01 0.71 -1.09 3

Fig. 6

Fingerprint of metabolic characteristics of soil microbial communities to 31 single carbon sources under different planting patterns A3: D-galactonic acid γ-Lactone; A2: β-methyl-D-glucoside; G1: D-cellobiose; H1: α-D-lactose; C2: i-erythritol; G2: α-D-glucose- 1-phosphate; B2: D-xylose; D2: D-mannitol; E2: N-acetyl-D-glucosamine; H2: D,L-α-glycerol phosphate; B3: D-galacturonic acid; F2: D-glucosaminic Acid; B4: L-asparagine; C4: L-phenylalanine; A4: L-arginine; D4: L-serine; E4: L-threonine; F4: glycyl-L-glutamic acid; E3: γ-hydroxybutyric acid; F3: itaconic acid; G3: α-ketobutyric acid; H3: D-malic acid; B1: pyruvic acid methyl ester; E1: α-cyclodextrin;F1: glycogen; C1: tween 40; D1: tween 80; C3: 2-hydroxy benzoic acid; D3: 4-hydroxy benzoic acid; G4: phenylethylamine; H4: putrescine.Different lowercase letters indicate significant difference between the corresponding means when using Duncan’s multiple comparisons (P < 0.05). Treatments are the same as those given in Fig. 2."

Table 5

Effects of planting patterns on soil microbial community diversity index"

处理
Treatment
香农指数
Shannon index
辛普森指数
Simpson index
均匀度指数
Evenness index
丰富度指数
McIntosh index
MSI 3.29±0.073 a 0.96±0.002 a 0.97±0.009 a 5.56±0.096 a
MM 3.12±0.206 a 0.95±0.003 b 0.94±0.046 a 4.97±0.118 b
SM 3.06±0.127 a 0.95±0.004 b 0.95±0.036 a 3.51±0.128 c

Fig. 7

Correlation analysis between soil physicochemical factors and soil microbial carbon source utilization characteristics and diversity H: Shannon index; D: Simpson index; E: Evenness index; U: McIntosh index. * indicates that the P-value is less than 0.05, and ** indicates that the P-value is less than 0.01. Abbreviations are the same as those given in Table 1 and Fig. 6."

Fig. 8

Redundancy analysis of soil physical and chemical properties and soil microbial community utilization characteristics of six types of carbon sources The red arrows represent environmental factors and the blue arrows represent the six types of carbon sources. RDA1 and RDA2 repre-sent the first and second axes of redundancy analysis, respectively. Each dot represents a sample, and different colored dots belong to different planting patterns. Treatments are the same as those given in Fig. 2. Abbreviations are the same as those given in Table 1 and Fig. 4."

[1] Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol, 2021, 27: 4697-4710.
[2] Philippot L, Chenu C, Kappler A, Rillig M C, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol, 2024, 22: 226-239.
[3] Sokol N W, Slessarev E, Marschmann G L, Nicolas A, Blazewicz S J, Brodie E L, Firestone M K, Foley M M, Hestrin R, Hungate B A, Koch B J, Stone B W, Sullivan M B, Zablocki O, Pett-Ridge J. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat Rev Microbiol, 2022, 20: 415-430.
[4] 宋亚娜, MARSCHNER Petra, 张福锁, 包兴国, 李隆. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26: 2268-2274.
Song Y N, Petra M, Zhang F S, Bao X G, Li L. Effect of intercropping on bacterial community composition in rhizoshpere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecol Sin, 2006, 26: 2268-2274 (in Chinese with English abstract).
[5] 涂勇, 杨文钰, 刘卫国, 雍太文, 江连强, 王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响. 作物学报, 2015, 41: 733-742.
Tu Y, Yang W Y, Liu W G, Yong T W, Jiang L Q, Wang X C. Effects of relay strip intercropping years between flue-cured tobacco and soybean on rhizospheric microbes quantities. Acta Agron Sin, 2015, 41: 733-742 (in Chinese with English abstract).
[6] 郑亚强, 张立敏, 杨进成, 杨坚, 高锐, 陈亮新, 董雪梅, 孙继红, 肖关丽, 李正跃, 陈斌. 甘蔗间作玉米对甘蔗根际微生物代谢功能多样性的影响. 中国生态农业学报, 2016, 24: 618-627.
Zheng Y Q, Zhang L M, Yang J C, Yang J, Gao R, Chen L X, Dong X M, Sun J H, Xiao G L, Li Z Y, Chen B. Effects of sugarcane and maize intercropping on sugarcane rhizosphere microbe metabolic function diversity. Chin J Eco-Agric, 2016, 24: 618-627 (in Chinese with English abstract).
[7] 李鑫, 张会慧, 岳冰冰, 金微微, 许楠, 朱文旭, 孙广玉. 桑树-大豆间作对盐碱土碳代谢微生物多样性的影响. 应用生态学报, 2012, 23: 1825-1831.
Li X, Zhang H H, Yue B B, Jin W W, Xu N, Zhu W X, Sun G Y. Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil. Chin J Appl Ecol, 2012, 23: 1825-1831 (in Chinese with English abstract).
[8] 于海玲, 张晓岩, 李晓宇, 蔡万美, 高强. 种植模式和施肥处理下根际土壤碳源利用能力的研究. 东北师大学报(自然科学版), 2022, 54: 126-133.
Yu H L, Zhang X Y, Li X Y, Cai W M, Gao Q. Effects of planting patterns and fertilization treatments on carbon source utilization capacity of rhizosphere soil. J Northeast Norm Univ (Nat Sci Edn), 2022, 54: 126-133 (in Chinese with English abstract).
[9] 覃潇敏, 郑毅, 汤利, 龙光强. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响. 作物学报, 2015, 41: 919-928.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity. Acta Agron Sin, 2015, 41: 919-928 (in Chinese with English abstract).
[10] 马昕伶, 秦文婧, 刘凯, 刘佳, 樊剑波, 李忠佩, 陈晓芬, 吴萌, 江春玉, 刘凯丽, 武志峰, 刘明. 竹豆间种对柑橘园土壤化学性质及微生物碳源代谢特征的影响. 中国土壤与肥料, 2021, (5): 200-206.
Ma X L, Qin W J, Liu K, Liu J, Fan J B, Li Z P, Chen X F, Wu M, Jiang C Y, Liu K L, Wu Z F, Liu M. Effect of bamboo bean intercropping on soil chemical properties and microbial carbon metabolism in Citrus orchard. Soil Fert Sci China, 2021, (5): 200-206 (in Chinese with English abstract).
[11] 林伟伟, 李娜, 陈丽珊, 吴则焰, 林文雄, 沈荔花. 玉米与大豆种间互作对根际细菌群落结构及多样性的影响. 中国生态农业学报(中英文), 2022, 30: 26-37.
Lin W W, Li N, Chen L S, Wu Z Y, Lin W X, Shen L H. Effects of interspecific maize and soybean interactions on the community structure and diversity of rhizospheric bacteria. Chin J Eco-Agric, 2022, 30: 26-37 (in Chinese with English abstract).
[12] 农业农村部. 农业农村部关于印发《“十四五”全国种植业发展规划》的通知. [2024-07-26], http://www.moa.gov.cn/nybgb/2022/202202/202204/t20220401_6395092.htm. .
Ministry of Agriculture and Rural Affairs. Notice of the Ministry of Agriculture and Rural Affairs on Issuing the “14th Five-Year Plan” National Planting Industry Development Plan. [2024-07-26], http://www.moa.gov.cn/nybgb/2022/202202/202204/t20220401_6395092.htm (in Chinese).
[13] 张晓娜, 陈平, 杜青, 周颖, 任建锐, 金福, 杨文钰, 雍太文. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响. 中国生态农业学报(中英文), 2019, 27: 1183-1194.
Zhang X N, Chen P, Du Q, Zhou Y, Ren J R, Jin F, Yang W Y, Yong T W. Effects of maize/soybean and maize/peanut intercropping systems on crops nitrogen uptake and nodulation nitrogen fixation. Chin J Eco-Agric, 2019, 27: 1183-1194 (in Chinese with English abstract).
[14] 王瑞雪, 苏丽珍, 张连娅, 王思睿, 王景, 肖靖秀, 郑毅, 汤利. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析. 中国生态农业学报(中英文), 2022, 30: 1155-1163.
Wang R X, Su L Z, Zhang L Y, Wang S R, Wang J, Xiao J X, Zheng Y, Tang L. Quantitative mechanism analysis of the improved P availability in red soil during maize/soybean intercropping. Chin J Eco-Agric, 2022, 30: 1155-1163 (in Chinese with English abstract).
[15] 李易玲, 彭西红, 陈平, 杜青, 任俊波, 杨雪丽, 雷鹿, 雍太文, 杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响. 中国农业科学, 2022, 55: 1749-1762.
Li Y L, Peng X H, Chen P, Du Q, Ren J B, Yang X L, Lei L, Yong T W, Yang W Y. Effects of reducing nitrogen application on leaf stay-green, photosynthetic characteristics and system yield in maize-soybean relay strip intercropping. Sci Agric Sin, 2022, 55: 1749-1762 (in Chinese with English abstract).
[16] 宁自力, 王贝贝, 谭先明, 滕一鸣, 杨文钰, 杨峰. 玉米行向配置对带状套作大豆光合特性、叶片结构及产量的影响. 中国生态农业学报(中英文), 2023, 31: 1038-1052.
Ning Z L, Wang B B, Tan X M, Teng Y M, Yang W Y, Yang F. Effect of maize row orientation configurations on the photosynthetic characteristics, leaf structure and yield of soybean in relay strip intercropping systems. Chin J Eco-Agric, 2023, 31: 1038-1052 (in Chinese with English abstract).
[17] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响. 作物学报, 2022, 48: 1199-1209.
Peng X H, Chen P, Du Q, Yang X L, Ren J B, Zheng B C, Luo K, Xie C, Lei L, Yong T W, Yang W Y. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean. Acta Agron Sin, 2022, 48: 1199-1209 (in Chinese with English abstract).
[18] 雍太文, 陈平, 刘小明, 周丽, 宋春, 王小春, 杨峰, 刘卫国, 杨文钰. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响. 作物学报, 2018, 44: 1485-1495.
Yong T W, Chen P, Liu X M, Zhou L, Song C, Wang X C, Yang F, Liu W G, Yang W Y. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems. Acta Agron Sin, 2018, 44: 1485-1495 (in Chinese with English abstract).
[19] 李孟婷, 宋艳宇, 宫超, 高思齐, 刘桢迪, 朱梦圆, 袁佳宝, 刘吉平. 湿地土壤微生物功能多样性及碳氮组分对长期氮输入的响应. 生态学报, 2023, 43: 8544-8555.
Li M T, Song Y Y, Gong C, Gao S Q, Liu Z D, Zhu M Y, Yuan J B, Liu J P. Response of soil microbial functional diversity and soil carbon and nitrogen components to long-term nitrogen input in wetlands. Acta Ecol Sin, 2023, 43: 8544-8555 (in Chinese with English abstract).
[20] Zheng T, Zhou Q X, Ouyang S H. Enhancing function of plant-microbial symbiosis for pollution mitigation and carbon sequestration. Chin Sci Bull, 2023, 68: 3155-3171.
[21] 游川, 杨天杰, 周新刚, 王孝芳, 徐阳春, 沈其荣, 韦中. 连作根系分泌物加剧土传病害的机制和缓解措施研究进展. 土壤学报, 2024, 61: 1201-1211.
You C, Yang T J, Zhou X G, Wang X F, Xu Y C, Shen Q R, Wei Z Z. Research Advances on Mechanisms and Preventions of Soil- borne Diseases Exacerbated by Root Exudates in Continuous Cropping Systems. Acta Pedol Sin, 2024, 61: 1201-1211 (in Chinese with English abstract).
[22] 刘泽琴, 刘宁, 李淑娟, 黄国勤, 周泉. 紫云英与油菜间作模式下根系分泌物对土壤微生物的影响. 华中农业大学学报, 2023, 42(4): 177-184.
Liu Z Q, Liu N, Li S J, Huang G Q, Zhou Q. Effects of root exudates on soil microorganisms under intercropping pattern of Chinese milkvetch and rapeseed. J Huazhong Agric Univ, 2023, 42(4): 177-184 (in Chinese with English abstract).
[23] 白晶芝, 高欢, 杨帆, 周新刚, 刘守伟, 吴凤芝. 分蘖洋葱与番茄伴生根系分泌物对根结线虫的影响. 植物保护, 2021, 47(3): 22-28.
Bai J Z, Gao H, Yang F, Zhou X G, Liu S W, Wu F Z. Effects of root exudates on root-knot nematodes in tomato-potato onion interplant system. Plant Prot, 2021, 47(3): 22-28 (in Chinese with English abstract).
[24] Zhang G Z, Yang H, Zhang W P, Bezemer T M, Liang W J, Li Q, Li L. Interspecific interactions between crops influence soil functional groups and networks in a maize/soybean intercropping system. Agric Ecosyst Environ, 2023, 355: 108595.
[25] 宋瑶, 周斯豪, 牛宏进, 张晓旭, 黄亚丽, 邢明振, 陈晓波. 玉米-大豆复合种植模式下玉米根区细菌群落特征分析. 环境科学, 2024, 45: 4894-4903.
Song Y, Zhou S H, Niu H J, Zhang X X, Huang Y L, Xing M Z, Chen X B. Analysis of bacterial community characteristics in maize root zones under maize-soybean compound planting mode. Environ Sci, 2024, 45: 4894-4903 (in Chinese with English abstract).
[26] 陈一夫. 玉米与大豆单、间作模式下的根际微生物组分析及促生菌群的筛选构建. 西北农林科技大学硕士学位论文, 陕西杨凌, 2023.
Chen Y F. Analysis of Rhizosphere Microbe and Screening and Construction of Growth-promoting Flora under Single and Intercropping Patterns of Maize and Soybean. MS Thesis of Northwest A & F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[27] 代真林, 汪娅婷, 姚秀英, 张晋豪, 王彦芳, 姚博, 魏兰芳, 姬广海. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响. 云南农业大学学报(自然科学), 2020, 35: 756-764.
Dai Z L, Wang Y T, Yao X Y, Zhang J H, Wang Y F, Yao B, Wei L F, Ji G H. Effects of maize/soybean intercropping on the microbial community characteristics of maize rhizosphere soil, maize yield and diseases. J Yunnan Agric Univ (Nat Sci), 2020, 35: 756-764 (in Chinese with English abstract).
[28] 孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响. 中国农业科学, 2023, 56: 2929-2940.
Sun T, Feng X M, Gao X H, Deng A X, Zheng C Y, Song Z W, Zhang W J. Effects of diversified cropping on the soil aggregate composition and organic carbon and total nitrogen content. Sci Agric Sin, 2023, 56: 2929-2940 (in Chinese with English abstract).
[29] Te X, Hassan M J, Cui K S, Xiao J H, Aslam M N, Saeed A, Yang W Y, Ali S. Effect of different planting pattern arrangements on soil organic matter and soil nitrogen content under a maize/soybean strip relay intercropping system. Front Plant Sci, 2022, 13: 995750.
[30] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415 (in Chinese with English abstract).
[31] 彭玺, 冯凯, 厉舒祯, 邓晔. 宏基因组学技术与微生物群落多样性分析方法. 科技导报, 2022, 40(3): 99-111.
Peng X, Feng K, Li S Z, Deng Y. Analytical methods for metagenomic technology and microbial community diversity. Sci Technol Rev, 2022, 40(3): 99-111 (in Chinese with English abstract).
[32] 林婷婷, 郑洁, 朱国繁, 栾璐, 杨叶钰萍, 刘佳, 徐勤松, 孙波, 蒋瑀霁. 有机肥处理对旱地红壤细菌群落及玉米生产力的影响. 环境科学, 2023, 44: 6965-6972.
Lin T T, Zheng J, Zhu G F, Luan L, Yang Y Y P, Liu J, Xu Q S, Sun B, Jiang Y J. Effects of organic fertilization on bacterial community and maize productivity in dryland red soil. Environ Sci, 2023, 44: 6965-6972 (in Chinese with English abstract).
[33] 王顶, 李欢, 伊文博, 陈林康, 赵平, 龙光强. 马铃薯间作对土壤微生物代谢功能多样性的促进效应及其氮素调控作用. 中国生态农业学报(中英文), 2022, 30: 1164-1173.
Wang D, Li H, Yi W B, Chen L K, Zhao P, Long G Q. Promoting effect of potato intercropping on functional diversity of soil microbial metabolism and nitrogen regulation. Chin J Eco-Agric, 2022, 30: 1164-1173 (in Chinese with English abstract).
[1] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[2] CHEN Chen, FU Xiu-Yi, CHEN Chuang-Yong, WU Shan-Shan, ZHANG Hua-Sheng, ZHANG Chun-Yuan, CHEN Shao-Jiang, ZHAO Jiu-Ran, WANG Yuan-Dong. Study on the haploid breeding performance of maize inbred lines [J]. Acta Agronomica Sinica, 2025, 51(2): 526-533.
[3] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[4] DING Shu-Qi, CHENG Tong, WANG Bi-Kun, YU De-Bin, RAO De-Min, MENG Fan-Gang, ZHAO Yin-Kai, WANG Xiao-Hui, ZHANG Wei. Effects of planting density on photosynthetic production and yield formation of soybean varieties from different eras [J]. Acta Agronomica Sinica, 2025, 51(1): 161-173.
[5] NIE Bo-Tao, LIU De-Quan, CHEN Jian, CUI Zheng-Guo, HOU Yun-Long, CHEN Liang, QIU Hong-Mei, WANG Yue-Qiang. Analysis and comprehensive evaluation of agronomic and quality traits of spring soybean varieties in northern China [J]. Acta Agronomica Sinica, 2024, 50(9): 2248-2266.
[6] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[7] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[8] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[9] LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130.
[10] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[11] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
[12] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[13] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[14] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[15] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .