Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 395-404.doi: 10.3724/SP.J.1006.2025.44088

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources

WANG Run-Feng(), LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Provincial Key Laboratory of Crop Genetic Improvement / South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, Guangdong, China
  • Received:2024-05-27 Accepted:2024-08-15 Online:2025-02-12 Published:2024-08-30
  • Contact: E-mail: xpchen1011@qq.com
  • Supported by:
    Special Support Program of Guangdong Province(2021TX06N789);Guangzhou Basic and Applied Basic Research Foundation(2023A04J0776);Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202104TD);China Agriculture Research System of MOF and MARA(Peanut);China Agriculture Research System of MOF and MARA(CARS-13)

Abstract:

Peanut is an important oil and cash crop in China, with early maturity being a key breeding objective. However, the evaluation of peanut maturity is complicated by the indeterminate flowering and subterranean fruiting traits, leading to a lack of technology for assessing early maturity in peanut germplasm. Early-maturing germplasm resources are the foundation for early-maturing breeding. This study enhanced and optimized the method for evaluating the maturity of peanut pods and precisely assessed the pod maturity of 390 core germplasm resources using indicators such as the pod maturity index, the ratio of mature pods, and the average gray value of pods. The findings revealed that the maturity assessment results identified by the three indicators exhibited a considerable level of agreement and were able to accurately differentiate the pod maturity among various peanut germplasms. Correlation analysis revealed that the correlation coefficients of pod maturity across various seasons ranged from 0.48 to 0.54, suggesting a substantial influence of the photo-thermal environment on peanut maturity. The correlation coefficients between pod maturity and flowering time ranged from -0.32 to -0.59, indicating the significance of flowering time in determining early maturation of peanuts. The correlation coefficients between pod maturity and shelling rate per plant ranged from 0.29 to 0.48, underscoring the considerable impact of peanut pod maturity on yield. By integrating the three maturity indicators, a total of 28 early-maturing germplasms were identified, with four germplasms—namely ICGV95057, ICG4601, 82-56②, and Guihua 26—demonstrating early maturity under various photo-thermal environments. This research offers significant insights and resources for the genetic improvement and further investigations of early maturity in peanuts.

Key words: peanut, pod maturity, early maturing, germplasm resources, maturity evaluation

Fig. 1

Standard for maturity grade of peanut pods L1-L5 represent levels 1-5 of peanut maturity, respectively."

Table 1

Agronomic traits and codes in this study"

类别 Type 性状 Trait 编号 Code
生育期性状
Traits of growth stage
始花期 Initial time of flowering (d) X1
开花期 Time of flowering (d) X2
盛花期 Time of full flowering (d) X3
荚果成熟度指数 Maturity index X4
成熟荚果比例 The ratio of mature pods (%) X5
荚果平均灰度值 Average gray value of pods X6
产量性状
Traits of yield
单株荚果重 Total pod weight per plant (g) X7
单株种仁重 Total seed weight per plant (g) X8
单株荚果数 Total number of pods per plant X9
单株出仁率 Shelling rate per plant (%) X10
荚果性状
Traits of pods
荚果长 Pod length (mm) X11
荚果宽 Pod width (mm) X12
荚果厚 Pod thickness (mm) X13
种仁长 Seed length (mm) X14
种仁宽 Seed width (mm) X15
种仁厚 Seed thickness (mm) X16

Fig. 2

Differences in pod maturity among various germplasm accessions"

Table 2

Descriptive statistics of pod maturity parameters among 390 peanut germplasm accessions"

性状
Traits
环境
Environment
平均值±标准差
Average ± SD
范围
Range
偏度系数
Skewness
峰度系数
Kurtosis
变异系数
CV (%)
荚果成熟度指数
Maturity index
E1 3.78 ± 0.69 1.43-4.94 -0.87 0.49 18.25
E2 3.67 ± 0.66 1.38-5.00 -0.77 0.68 17.98
成熟荚果比例
Ratio of mature pods
E1 0.62 ± 0.23 0-1.00 -0.71 -0.03 37.10
E2 0.69 ± 0.23 0-1.00 -1.06 0.66 33.33
荚果平均灰度值
Average gray value of pods
E1 109.77 ± 20.00 62.57-159.91 0.28 -0.65 18.22
E2 69.18 ± 20.40 25.22-135.76 0.80 0.69 29.49

Fig. 3

Correlation analysis of pod maturity index, ratio of mature pods, and average gray value of pods under different seasons X4_1, X5_1, and X6_1 represent the pod maturity index, the ratio of mature pods, and the average gray value of pods under spring sowing conditions, respectively; X4_2, X5_2, and X6_2 represent the pod maturity index, the ratio of mature pods, and the average gray value of pods under autumn sowing conditions, respectively. *** indicates significant correlation at the 0.001 probability level."

图A

Distribution of pod maturity index, ratio of mature pods, and average gray value of pods A, B, and C show the distribution of pod maturity index, ratio of mature pods, and average gray value of pods, respectively, under spring sowing conditions. D, E, and F illustrate the distribution of pod maturity index, ratio of mature pods, and average gray value of pods, respectively, under autumn sowing conditions."

Table 3

Early-maturing peanut germplasms evaluated by pod maturity indicators"

组别
Group
品种
Variety
春季 Spring 秋季 Autumn
成熟度指数
Maturity index
成熟荚果比例
Ratio of mature pods (%)
荚果灰度值
Gray value of pods
成熟度指数
Maturity index
成熟荚果比例
Ratio of mature pods (%)
荚果灰度值
Gray value
of pods
I ICGV95057 4.94 100.0 78.61 4.48 93.5 40.65
ICG4601 4.69 92.3 69.70 4.60 100.0 63.35
82-56② 4.67 94.4 82.17 4.50 100.0 39.00
桂花26 Guihua 26 4.64 92.9 92.31 4.43 92.9 43.38
II Fesr-2 4.76 95.2 72.81 4.67 83.3 50.40
UF71513-1 4.73 89.6 75.99 4.20 84.0 53.40
菲律宾红衣 Philippines hongyi 4.87 95.7 80.27 4.04 73.9 55.66
木梗耘 Mugengyun 4.91 100.0 67.11 3.97 72.4 62.24
湛油65 Zhanyou 65 4.62 96.2 81.58 3.76 85.3 73.49
ICGV3046 4.69 100.0 84.28 3.29 54.3 67.00
粤油四粒白Yueyousilibai 4.74 100.0 72.70 3.20 57.1 82.50
III NcAc17090 4.71 87.1 90.52 5.00 100.0 42.64
美引二号Meiyin 2 4.33 76.2 103.32 5.00 100.0 33.38
群毅三月拧Qunyisanyuening 4.47 83.7 92.67 4.82 96.4 27.66
ICG2031 4.24 75.0 4.89 100.0 38.93
陆屋大花生Luwudahuasheng 4.29 83.9 4.81 96.2 44.46
ICGV94413 4.45 87.1 91.84 4.59 100.0 32.78
巴基斯坦红衣Pakistan hongyi 3.97 65.6 111.59 5.00 100.0 25.22
ICGNO6313 3.84 63.2 101.45 5.00 100.0 42.45
美华大豆 Meihuadadou 4.12 76.5 4.67 93.8 39.86
猛鸡乸 Mengjina 4.48 80.6 84.89 4.25 95.0 41.66
ICGV67 3.74 63.2 95.98 4.86 95.2 37.72
南非花生 South Africa huasheng 3.68 57.9 106.23 4.85 95.0 29.01
绵新1号 Mianxin 1 4.16 68.4 101.95 4.23 93.5 43.97
闽花6号 Minhua 6 3.96 69.2 113.24 4.41 96.6 42.39
马圩大豆 Maweidadou 3.86 83.3 4.39 96.4 37.61
梧油5号 Wuyou 5 4.00 76.5 122.31 4.24 96.0 43.64
冀花15号 Jihua 15 3.94 65.7 98.02 4.22 100.0 33.42
CK 白沙1016 Baisha 1016 4.17 83.3 87.93 3.56 70.0 67.13

Fig. 5

Correlation analysis of peanut maturity and other agronomy traits under spring-sowing condition X1: Initial time of flowering; X2: time of flowering; X3: time of full flowering; X4: maturity index; X5: ratio of mature pods; X6: average gray value of pods; X7: total pod weight per plant; X8: total seed weight per plant; X9: total number of pods per plant; X10: shelling rate per plant; X11: pod length; X12: pod width; X13: pod thickness; X14: seed length; X15: seed width; X16: seed thickness. *, **, and *** indicate significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 6

Correlation analysis of peanut maturity and other agronomy traits under autumn-sowing condition The codes X1-X16 are the same as those shown in Fig. 5. *, **, and *** indicate significant correlation at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 7

Statistics of daily average temperature and pyranometer during the entire growth period of peanuts in different seasons"

[1] 葛选良, 钱春荣, 王柏臣, 于洋, 姜宇博. 作物早熟性基因定位与遗传效应的研究进展. 植物遗传资源学报, 2014, 15: 1161-1166.
doi: 10.13430/j.cnki.jpgr.2014.05.036
Ge X L, Qian C R, Wang B C, Yu Y, Jiang Y B. Research progress in gene mapping and genetic effects of crop earliness. J Plant Genet Resour, 2014, 15: 1161-1166 (in Chinese with English abstract).
[2] 李少雄, 洪彦彬, 陈小平, 梁炫强. 广东花生生产、育种和种业现状与发展对策. 广东农业科学, 2020, 47(11): 78-83.
Li S X, Hong Y B, Chen X P, Liang X Q. Present situation and development strategies of peanut production, breeding and seed industry in Guangdong. Guangdong Agric Sci, 2020, 47(11): 78-83 (in Chinese with English abstract).
[3] 王润风, 鲁清, 洪彦彬, 梁炫强, 陈小平, 刘国强, 洪成佳, 李少雄. 中国南方区试花生品种的遗传多样性分析. 广东农业科学, 2021, 48(12): 44-53.
Wang R F, Lu Q, Hong Y B, Liang X Q, Chen X P, Liu G Q, Hong C J, Li S X. Analysis on the genetic diversity of peanut varieties in regional tests of Southern China. Guangdong Agric Sci, 2021, 48(12): 44-53 (in Chinese with English abstract).
[4] 禹山林. 中国花生遗传育种学. 上海: 上海科学技术出版社, 2011. pp 394-410.
Yu S L. Genetics Breeding of Peanut in China. Shanghai: Shanghai Scientific and Technical Publishers, 2011. pp 394-410 (in Chinese).
[5] 邢程. 高油酸花生不同成熟度品质的研究. 辽宁大学硕士学位论文, 辽宁沈阳, 2017.
Xing C. Study on Different Maturity Quality of Peanut with High Oleic Acid. MS Thesis of Liaoning University, Shenyang, Liaoning, China, 2017 (in Chinese with English abstract).
[6] Ethan C, Patrick T, Diane R, Barry T, Keith W, Krystel P, Michael M. Methods to evaluate peanut maturity for optimal seed quality and yield. UF/IFAS Extension, 2016. https://edis.ifas.ufl.edu/publication/AG411.
[7] Liew X Y, Sinniah U R, Yusoff M M, Ugap A W. Flowering pattern and seed development in indeterminate peanut cv. ‘Margenta’ and its influence on seed quality. Seed Sci Technol, 2021, 49: 45-62.
doi: 10.15258/sst.2021.49.1.06
[8] Okada M H, Oliveira G R F, Sartori M M P, Crusciol C A C, Nakagawa J, Amaral da Silva E A. Acquisition of the physiological quality of peanut (Arachis hypogaea L.) seeds during maturation under the influence of the maternal environment. PLoS One, 2021, 16: e0250293.
[9] Fonseca de Oliveira G R, Amaral da Silva E A. Tropical peanut maturation scale for harvesting seeds with superior quality. Front Plant Sci, 2024, 15: 1376370.
[10] 吴琪, 宁维光, 曹广英, 胡晓辉, 王秀贞, 王志伟, 孙全喜, 唐月异, 石程仁, 王传堂. 花生荚果不同成熟度对籽仁品质性状的影响. 花生学报, 2018, 47(2): 68-73.
Wu Q, Ning W G, Cao G Y, Hu X H, Wang X Z, Wang Z W, Sun Q X, Tang Y Y, Shi C R, Wang C T. The influence of pod maturity on quality traits of peanut seeds. J Peanut Sci, 2018, 47(2): 68-73 (in Chinese with English abstract).
[11] Lu Q, Huang L, Liu H, Garg V, Gangurde S S, Li H F, Chitikineni A, Guo D D, Pandey M K, Li S X, Liu H Y, Wang R F, Deng Q Q, Du P X, Varshney R K, Liang X Q, Hong Y B, Chen X P. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet, 2024, 56: 530-540.
[12] Williams E J, Drexler J S. A non-destructive method for determining peanut pod maturity. Peanut Sci, 1981, 8: 134-141.
[13] Kunta S, Parimi P, Levy Y, Kottakota C, Chedvat I, Chu Y, Ozias-Akins P, Hovav R. A first insight into the genetics of maturity trait in Runner × Virginia types peanut background. Sci Rep, 2022, 12: 15267.
doi: 10.1038/s41598-022-19653-z pmid: 36088406
[14] Pattee H E, Wynne J C, Young J H, Cox F R. The seed-hull weight ratio as an index of peanut maturity. Peanut Sci, 1977, 4: 47-50.
[15] Gilman D F, Smith O D. Internal pericarp color as a subjective maturity index for peanut breeding. Peanut Sci, 1977, 4: 67-70.
[16] Pattee H E, Wynne J C, Sanders T H, Schubert A M. Relation of the seed/hull ratio to yield and dollar value in peanut production. Peanut Sci, 1980, 7: 74-77.
[17] Sanders T H, Williams E J, Schubert A M, Pattee H E. Peanut maturity method evaluations: I. Southeast. Peanut Sci, 1980, 7: 78-82.
[18] Fincher P G, Young C T, Wynne J C, Perry A. Adaptability of the arginine maturity index method to Virginia type peanuts in North Carolina. Peanut Sci, 1980, 7: 83-87.
[19] Mozingo R W, Coffelt T A, Wright F S. The influence of planting and digging dates on yield, value, and grade of four Virginia-type peanut cultivars. Peanut Sci, 1991, 18: 55-62.
[20] Rucker K S, Kvien C K, Vellidis G, Hill N S, Sharpe J K. A visual method of determining maturity of shelled peanuts. Peanut Sci, 1994, 21: 143-146.
[21] Sanders T H, Bett K L. Effect of harvest date on maturity, maturity distribution, and flavor of Florunner peanuts. Peanut Sci, 1995, 22: 124-129.
[22] 夏友霖, 赖明芳, 崔富华. 花生品种丰产性、早熟性、耐旱性评价. 中国油料作物学报, 1999, 21(2): 25-27.
Xia Y L, Lai M F, Cui F H. Evaluation of high yield, early maturity and drought tolerance of peanut varieties. Chin J Oil Crop Sci, 1999, 21(2): 25-27 (in Chinese).
[23] Souza J B C, Almeida S L H, Oliveira M F, Santos A F, Filho A L B, Meneses M D, Silva R P. Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks. Agronomy, 2022, 12: 1512.
[24] Santos A F, Lacerda L N, Rossi C, Moreno L A, Oliveira M F, Pilon C, Silva R P, Vellidis G. Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks. Remote Sens, 2021, 14: 93.
[25] Santos A F, Corrêa L N, Lacerda L N, Oliveira D T, Pilon C, Vellidis G, Silva R P. High-resolution satellite image to predict peanut maturity variability in commercial fields. Precis Agric, 2021, 22: 1464-1478.
[26] Almeida S L H, Souza J B C, Pilon C, Teixeira A H C, Santos A F, Sysskind M N, Vellidis G, Silva R P. Performance of the SAFER model in estimating peanut maturation. Eur J Agron, 2023, 147: 126844.
[27] Kunta S, Agmon S, Chedvat I, Levy Y, Chu Y, Ozias-Akins P, Hovav R. Identification of consistent QTL for time to maturation in Virginia-type peanut (Arachis hypogaea L.). BMC Plant Biol, 2021, 21: 186.
[28] Upadhyaya H D, Nigam S N. Inheritance of two components of early maturity in groundnut (Arachis hypogaea L.). Euphytica, 1994, 78: 59-67.
[29] Jaisil P, Akkasaeng C, Kesmala T, Jogloy S. Heritability and correlation for maturity and pod yield in peanut. J Appl Sci Res, 2011, 7: 134-140.
[1] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-695.
[2] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[3] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[4] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[5] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[6] SUN Xian-Jun, HU Zheng, JIANG Xue-Min, WANG Shi-Jia, CHEN Xiang-Qian, ZHANG Hui-Yuan, ZHANG Hui, JIANG Qi-Yan. Identification, evaluation and screening of salt-tolerant of soybean germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(9): 2179-2186.
[7] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[8] LI Xiao-Fei, GAO Hua-Wei, GUANG Hui, SHI Yu-Xin, GU Yong-Zhe, QI Zhao-Ming, QIU Li-Juan. Identification and evaluation of atrazine tolerance of soybean germplasm resources at germination stage and screening of excellent germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1699-1709.
[9] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[10] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[11] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
[12] LU Qing, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, LIANG Xuan-Qiang, CHEN Xiao-Ping, HONG Yan-Bin, LIU Hai-Yan, LI Shao-Xiong. Research on oil content screen with genomic selection and near infrared ray in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 969-980.
[13] ZHANG Yue, WANG Zhi-Hui, HUAI Dong-Xin, LIU Nian, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Research progress on genetic basis and QTL mapping of oil content in peanut seed [J]. Acta Agronomica Sinica, 2024, 50(3): 529-542.
[14] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[15] JIN Xin-Xin, SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Metabolome and transcriptome analysis of flavonoids in peanut testa [J]. Acta Agronomica Sinica, 2024, 50(12): 2950-2961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .