Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2100-2110.doi: 10.3724/SP.J.1006.2025.55007

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression pattern analysis of the BnaDUF579 gene family in Brassica napus

WANG Bin**(), MENG Jiang-Yu**(), QIU Hao-Liang, HE Ya-Jun*(), QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2025-01-15 Accepted:2025-04-27 Online:2025-08-12 Published:2025-05-26
  • Contact: *E-mail: hyj790124@163.com
  • About author:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32272060);National Key Research and Development Program of China(2022YFD1200400);Natural Science Foundation of Chongqing(cstc2021jcyj-msxmx1198);Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0423)

Abstract:

The domain of unknown function 579 (DUF579) family is widely distributed across eukaryotes and plays a critical role in secondary cell wall development and xylan biosynthesis. However, a comprehensive investigation of BnaDUF579 genes in Brassica napus has not yet been reported. In this study, we performed a genome-wide identification and bioinformatic analysis of BnaDUF579 family members. Phylogenetic relationships, gene structure, conserved motif composition, chromosomal distribution, and collinearity were systematically analyzed. Additionally, tissue-specific expression patterns and promoter cis-acting elements were examined. A total of 31 BnaDUF579 genes were identified, of which 24 contained only a single exon. Based on sequence alignment and phylogenetic analysis, these genes were classified into four clades, Group1, Group2, Group3, and Group4. Genes within the same clade exhibited similar motif compositions, whereas those in different clades showed distinct differences. Evolutionary analysis revealed that the BnaDUF579 gene family is more closely related to that of B. oleracea than to B. rapa. Expression profiling showed that BnaDUF579 genes are predominantly expressed in the stem, root, silique, and seed tissues of rapeseed. Promoter analysis indicated that cis-acting elements associated with hormone responses, abiotic stress, tissue development, and light responsiveness are widely present. Overall, these findings enhance our understanding of the BnaDUF579 gene family and provide a foundation for future functional studies in Brassica napus.

Key words: Brassica napus, BnaDUF579, gene family, expression analysis, xyloglucan

Table 1

qRT-PCR primers used in this study"

基因名称
Gene name
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Reverse primer sequence (5′-3′)
BnaActin7 GGAGCTGAGAGATTCCGTTG GAACCACCACTGAGGACGAT
BnaA09G0469400ZS CCTTCCCCAACCACCACT CGAAGACGAGGAGGTTGC
BnaA07G0280400ZS ACTTTCGCGGAGGAGTTCTT CCTGTAATCTCCACCGTCG
BnaC06G0382400ZS CGGCGGCTAGAGATAGAGAA GCTTCTTCGTGAAACCCAGTA
BnaC07G0206400ZS CTTCACCATCGCTTTTCTCCT CGTTGGCAACTGAGAGGTG
BnaA09G0107100ZS CGTCGACGAGAATCCTTACTTA GTTAGGTAAATCGTTGATCGCC

Table 2

Basic information of BnaDUF579 family members in Brassica napus"

数目
Number
分支
Group
基因名称
Gene ID
蛋白长度
Protein length (aa)
分子量
Molecular weight (Da)
等电点
Isoelectric point
1 Group1 BnaC06G0104800ZS 296 33,691.33 8.03
2 Group1 BnaA09G0381200ZS 296 33,692.32 7.59
3 Group1 BnaA08G0293400ZS 281 31,840.50 7.57
4 Group1 BnaA05G0318700ZS 297 33,747.22 6.51
5 Group1 BnaC08G0195300ZS 281 31,835.56 8.35
6 Group1 BnaC06G0382400ZS 296 33,018.62 5.94
7 Group1 BnaA07G0326600ZS 296 33,077.72 6.31
8 Group1 BnaC02G0257800ZS 106 12,216.96 5.60
9 Group1 BnaC02G0257900ZS 163 17,749.29 5.13
10 Group2 BnaA03G0394800ZS 327 35,772.35 6.00
11 Group2 BnaA09G0469400ZS 324 36,052.89 6.60
12 Group2 BnaC08G0304500ZS 324 36,080.95 6.60
13 Group2 BnaC07G0206400ZS 315 35,596.34 7.18
14 Group2 BnaA07G0142200ZS 315 35,637.43 7.16
15 Group2 BnaC09G0093600ZS 308 34,733.51 6.82
16 Group2 BnaC03G0489400ZS 330 36,106.81 6.37
17 Group2 BnaA09G0107100ZS 323 35,524.20 7.12
18 Group2 BnaC09G0108200ZS 320 35,198.92 6.75
19 Group3 BnaC03G0580500ZS 139 15,392.55 8.93
20 Group3 BnaA07G0097300ZS 289 32,282.19 8.53
21 Group3 BnaC07G0148300ZS 289 32,328.22 8.52
22 Group3 BnaC06G0321200ZS 291 32,547.31 6.45
23 Group3 BnaA07G0280400ZS 291 32,535.25 6.24
24 Group3 BnaA09G0427700ZS 289 32,399.37 9.16
25 Group3 BnaC05G0239000ZS 289 32,399.37 9.16
26 Group3 BnaA02G0165700ZS 288 32,293.04 8.17
27 Group3 BnaC02G0212300ZS 295 33,182.18 8.67
28 Group4 BnaC07G0460400ZS 312 34,769.71 9.63
29 Group4 BnaC01G0183700ZS 311 34,904.00 9.57
30 Group4 BnaA01G0144700ZS 309 34,794.00 9.70
31 Group4 BnaA03G0482400ZS 312 34,980.20 9.74

Fig. 1

Phylogenetic analysis of DUF579 proteins in B. napus, A. thaliana, B. rapa and B. oleracea"

Fig. 2

Conserved motifs, conserved structural domains, and gene structure of the BnaDUF579 gene family in Brassica napus A: phylogenetic tree of BnaDUF579 proteins; B: conserved motifs of BnaDUF579 proteins; C: conserved structural domains of BnaDUF579; D: gene structure of BnaDUF579."

Fig. 3

Distribution of BnaDUF579s on chromosomes"

Fig. 4

Collinearity of DUF579s in A. thaliana, B. rapa, B. oleracea, and B. napus The red lines indicate orthologous DUF579 genes between B. napus and A. thaliana or B. oleracea. The two black lines indicate two orthologous DUF579 genes between B. napus and B. rapa."

Fig. 5

Expression levels of BnaDUF579 in different tissues and organs of B. napus A: expression pattern of BnaDUF579 in transcriptome data. B: expression levels of selected BnaDUF579 were verified by qRT-PCR."

Fig. 6

Cis-element analysis on the promoter regions of BnaDUF579 genes"

[1] Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, et al. Pfam:the protein families database in 2021. Nucleic Acids Res, 2021, 49: D412-D419.
[2] Bateman A, Coggill P, Finn R D. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66: 1148-1152.
doi: 10.1107/S1744309110001685 pmid: 20944204
[3] Lyu P, Wan J, Zhang C, Hina A, Al Amin G M, Begum N, Zhao T. Unraveling the diverse roles of neglected genes containing domains of unknown function (DUFs): progress and perspective. Int J Mol Sci, 2023, 24: 4187.
[4] Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. Protoplasma, 2024, 261: 397-410.
[5] 张艺, 王晓晶, 赵淑清. 拟南芥DUF647家族成员RUS4植物表达载体的构建及亚细胞定位. 分子植物育种, 2020, 18: 444-449.
Zhang Y, Wang X J, Zhao S Q. Construction of the plant expression vector and subcellular localization of DUF647 family member RUS4 in Arabidopsis thaliana. Mol Plant Breed, 2020, 18: 444-449 (in Chinese with English abstract).
[6] 李文超, 张艺, 赵淑青. 拟南芥RUS4基因沉默对花药药室内壁次生加厚的影响. 中国细胞生物学学报, 2019, 41: 619-626.
Li W C, Zhang Y, Zhao S Q. Silencing of Arabidopsis RUS4 impairs anther endothecium secondary cell wall thickening. Chin J Cell Biol, 2019, 41: 619-626 (in Chinese with English abstract).
[7] 姜身飞, 谢云杰, 李乐乐, 王昱澎, 蔡秋华, 谢华安, 张建福. 水稻未知功能结构域基因OsDUF6的抗体制备. 福建农业学报, 2020, 35(2): 117-123.
Jiang S F, Xie Y J, Li L L, Wang Y P, Cai Q H, Xie H A, Zhang J F. Preparation of antibody for OsDUF6 with unknown functional domain from Oryzae sativa. Fujian J Agric Sci, 2020, 35(2): 117-123 (in Chinese with English abstract).
[8] Chen G, Cao X, Ma Z, Tang Y, Zeng Y, Chen L, Ye D, Zhang X. Overexpression of the nuclear protein gene AtDUF4 increases organ size in Arabidopsis thaliana and Brassica napus. J Genet Genomics, 2018, 45: 459-462.
[9] 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证. 作物学报, 2022, 48: 1635-1644.
doi: 10.3724/SP.J.1006.2022.14106
Dai L S, Chang W, Zhang S, Qian M C, Li X D, Zhang K, Li J N, Qu C M, Lu K. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana. Acta Agron Sin, 2022, 48: 1635-1644 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14106
[10] Yuan Y, Teng Q, Zhong R, Ye Z H. TBL3 and TBL31, two Arabidopsis DUF231 domain proteins, are required for 3-O- monoacetylation of xylan. Plant Cell Physiol, 2016, 57: 35-45.
[11] Gao Y, Badejo A A, Sawa Y, Ishikawa T. Analysis of two L-Galactono-1,4-lactone-responsive genes with complementary expression during the development of Arabidopsis thaliana. Plant Cell Physiol, 2012, 53: 592-601.
[12] Yang S Q, Li W Q, Miao H, Gan P F, Qiao L, Chang Y L, Shi C H, Chen K M. REL2, a gene encoding an unknown function protein which contains DUF630 and DUF632 domains controls leaf rolling in rice. Rice, 2016, 9: 37.
[13] Yan D W, Zhou Y, Ye S H, Zeng L J, Zhang X M, He Z H. Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Sci China Life Sci, 2013, 56: 275-283.
[14] Cui Y, Wang M, Zhou H, Li M, Huang L, Yin X, Zhao G, Lin F, Xia X, Xu G. OsSGL a novel DUF1645 domain-containing protein, confers enhanced drought tolerance in transgenic rice and Arabidopsis. Front Plant Sci, 2016, 7: 2001.
[15] Kim J M, Woo D H, Kim S H, Lee S Y, Park H Y, Seok H Y, Chung W S, Moon Y H. Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Rep, 2012, 31: 217-224.
[16] Luo C, Guo C, Wang W, Wang L, Chen L. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep, 2014, 33: 323-336.
[17] Song D, Sun J, Li L. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. Plant Mol Biol, 2014, 85: 601-612.
[18] Smith P J, O’Neill M A, Backe J, York W S, Peña M J, Urbanowicz B R. Analytical techniques for determining the role of domain of unknown function 579 proteins in the synthesis of O-methylated plant polysaccharides. SLAS Technol, 2020, 25: 345-355.
[19] Li M, Chen F, Luo J, Gao Y, Cai J, Zeng W, Doblin M S, Huang G, Xu W. The DUF579 proteins GhIRX15s regulate cotton fiber development by interacting with proteins involved in xylan synthesis. Crop J, 2024, 12: 1112-1125.
doi: 10.1016/j.cj.2024.07.006
[20] Lee C, Teng Q, Zhong R, Yuan Y, Haghighat M, Ye Z H. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-O-methylation of glucuronic acid on xylan. Plant Cell Physiol, 2012, 53: 1934-1949.
[21] Temple H, Mortimer J C, Tryfona T, Yu X, Lopez-Hernandez F, Sorieul M, Anders N, Dupree P. Two members of the DUF579 family are responsible for Arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3: e00117.
[22] Li X, Jackson P, Rubtsov D V, Faria-Blanc N, Mortimer J C, Turner S R, Krogh K B, Johansen K S, Dupree P. Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnol Biofuels, 2013, 6: 94.
doi: 10.1186/1754-6834-6-94 pmid: 23819705
[23] Urbanowicz B R, Peña M J, Ratnaparkhe S, Avci U, Backe J, Steet H F, Foston M, Li H, O’Neill M A, Ragauskas A J, et al. 4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci USA, 2012, 109: 14253-14258.
doi: 10.1073/pnas.1208097109 pmid: 22893684
[24] Jensen J K, Kim H, Cocuron J C, Orler R, Ralph J, Wilkerson C G. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. Plant J, 2011, 66: 387-400.
[25] Brown D, Wightman R, Zhang Z, Gomez L D, Atanassov I, Bukowski J P, Tryfona T, McQueen-Mason S J, Dupree P, Turner S. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J, 2011, 66: 401-413.
[26] 刘新红, 邓力超, 曲亮, 惠荣奎, 李莓. 油菜的多用途利用及产业发展建议. 湖南农业科学, 2018, (5): 100-103.
Liu X H, Deng L C, Qu L, Hui R K, Li M. Multipurpose utilization of rape and suggestions on development of rape industry. Hunan Agric Sci, 2018, (5): 100-103 (in Chinese with English abstract).
[27] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[28] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629
[29] Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16: 1733-1742.
[30] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[31] 陈吴钧, 刘江栋, 蒋凯旋, 王幼平, 蒋金金. 甘蓝型油菜BnKNOX基因家族的鉴定与分析. 作物学报, 2023, 49: 2991-3006.
doi: 10.3724/SP.J.1006.2023.34027
Chen W J, Liu J D, Jiang K X, Wang Y P, Jiang J J. Identification and analysis of BnKNOX gene family in Brassica napus. Acta Agron Sin, 2023, 49: 2991-3006 (in Chinese with English abstract).
[32] Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol, 2021, 22: 166.
doi: 10.1186/s13059-021-02383-2 pmid: 34059118
[1] GUO Teng-Da, CUI Meng-Jie, CHEN Lin-Jie, HAN Suo-Yi, GUO Jing-Kun, WU Chen-Di, FU Liu-Yang, HUANG Bing-Yan, DONG Wen-Zhao, ZHANG Xin-You. Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection [J]. Acta Agronomica Sinica, 2025, 51(6): 1489-1500.
[2] XIA Qi, GUO Ying, WANG Kun-Mei, WANG Si-Yi, JU Jian-Ye, PENG Ya-Wen, LIU Zhong-Song, XIA Shi-Tou. Correlation between salicylic acid and anthocyanins accumulation in seeds of different varieties in Brassica napus [J]. Acta Agronomica Sinica, 2025, 51(5): 1189-1197.
[3] LU Wen-Jia, WANG Jun-Cheng, YAO Li-Rong, ZHANG Hong, SI Er-Jing, YANG Ke, MENG Ya-Xiong, LI Bao-Chun, MA Xiao-Le, WANG Hua-Jun. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(5): 1198-1214.
[4] ZHOU En-Qiang, MIAO Ya-Mei, ZHOU Yao, YAO Meng-Nan, ZHAO Na, WANG Yong-Qiang, ZHU Yu-Xiang, XUE Dong, LI Zong-Di, SHI Yu-Xin, LI Bo, WANG Kai-Hua, GU Chun-Yan, WANG Xue-Jun, WEI Li-Bin. Analysis of bZIP gene family and identification of seed development candidate genes in pea based on seed development transcriptome [J]. Acta Agronomica Sinica, 2025, 51(4): 914-931.
[5] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[6] ZHANG Qin, DAI Cheng, MA Chao-Zhi. Auxin response reporter gene transformation of Brassica napus and dynamic signal analysis of GUS in different tissues [J]. Acta Agronomica Sinica, 2025, 51(3): 667-675.
[7] GUO Bing, QIN Jia-Fan, LI Na, SONG Meng-Yao, WANG Li-Ming, LI Jun-Xia, MA Xiao-Qian. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2025, 51(3): 586-5897.
[8] SUN Cheng-Ming, ZHOU Xiao-Ying, CHEN Feng, ZHANG Wei, WANG Xiao-Dong, PENG Qi, GUO Yue, GAO Jian-Qin, HU Mao-Long, FU San-Xiong, ZHANG Jie-Fu. Functional analysis and prediction of long non-coding RNA (lncRNA) in the regulation of branch angle in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(3): 559-567.
[9] XU Lin-Shan, GAO Geng-Dong, WANG Yu, WANG Jia-Xing, YANG Ji-Zhao, WU Ya-Rui, ZHANG Xiao-Han, CHANG Ying, LI Zhen, XIE Xiong-Ze, GONG De-Ping, WANG Jing, GE Xian-Hong. Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance [J]. Acta Agronomica Sinica, 2025, 51(1): 134-148.
[10] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[11] YANG Yu-Chen, JIN Ya-Rong, LUO Jin-Chan, ZHU Xin, LI Wei-Hang, JIA Ji-Yuan, WANG Xiao-Shan, HUANG De-Jun, HUANG Lin-Kai. Identification and expression analysis of the WD40 gene family in pearl millet [J]. Acta Agronomica Sinica, 2024, 50(9): 2219-2236.
[12] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[13] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[14] ZHONG Yuan, ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi. Developing and resistance assessing of phosphite-tolerant herbicide transgenic Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1158-1171.
[15] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!