Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2295-2306.doi: 10.3724/SP.J.1006.2025.53016

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of waterlogging stress on root metabolism of maize seedlings

JIANG Huan-Qi1,2(), DUAN Ao1, GUO Chao1, HUANG Xiao-Meng1, AI De-Jun1, LIU Xiao-Xue1, TAN Jing-Yi1, PENG Cheng-Lin2, LI Man-Fei1,*(), DU He-Wei1,*()   

  1. 1College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
    2Plant Protection and Soil Fertilizer Institute, Hubei Academy of Agricultural Sciences / National Soil Quality Hongshan Observation and Experimental Station, Wuhan 430064, Hubei, China
  • Received:2025-03-02 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: mfli_maize@163.com; E-mail : duhewei666@163.com
  • Supported by:
    National Natural Science Foundation of China(32072069);National Natural Science Foundation of China for Young Scientists(32301910);Hubei Provincial Natural Science Foundation Innovation Group Project(2022CFA030);Yangtze University College Students’ Innovation and Entrepreneurship Project(Yz2024251)

Abstract:

To investigate key metabolites and changes in metabolic pathways in maize (Zea mays L.) seedlings under waterlogging stress, plants were subjected to four stress durations (0, 1, 4, and 7 days). Transcriptome sequencing (RNA-seq) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were employed to identify differentially accumulated metabolites, followed by KEGG enrichment analysis to explore associated metabolic pathways. A total of 1361 differential metabolites were annotated and quantified. The most pronounced metabolic changes were observed at 4 days, with 414 metabolites significantly altered—372 upregulated and 42 downregulated. The top 20 most differentially accumulated metabolites were all upregulated, including ferulic acid-4-O-glucoside, 2-phenylethanol, 7-methyl-ergochalcone, and S-allyl-L-cysteine. KEGG pathway analysis revealed significant enrichment in flavonoid biosynthesis, carotenoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signaling, ABC transporters, fatty acid degradation, starch and sucrose metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and glycolysis/gluconeogenesis. Among these, flavonoid biosynthesis was found to be closely associated with waterlogging stress, with key flavonoids such as naringenin and luteolin, and enzymes including chalcone isomerase, flavonoid synthase II, and flavonoid 3',5'-hydroxylase/3'-monooxygenase playing critical roles. These findings provide new insights into the molecular mechanisms underlying maize tolerance to waterlogging and offer a theoretical basis for breeding waterlogging-tolerant maize varieties.

Key words: maize, waterlogging stress, metabolomics, differential metabolites, metabolic pathway

Fig. 1

Analysis of data variability and reproducibility A: samples are shown as points, with PC1 and PC2 indicating the first and second principal components, and the percentage showing the variance explained by each component. B: the plot shows Pearson correlation coefficients between samples, with colors indicating correlation strength and direction: red for strong positive, green for weak, and blue for strong negative correlations, with values annotated in squares."

Fig. 2

Integrated analysis of gene expression and metabolic profiles in maize under waterlogging stress All sig diff: number of significantly different metabolites; Down regulated: number of downregulated metabolites or genes; Up regulated: number of upregulated metabolites or genes. In Fig. D, each circle denotes a comparison group, with overlaps indicating shared differential metabolites and non-overlaps indicating unique ones."

Fig. 3

Phenotypic changes in maize seedlings under waterlogging stress CK: control group; W: waterlogged treatment group, scale bar: 5 cm. * and *** mean significant difference at the 0.05 and 0.001 probability levels, respectively; ns means not significant difference."

Fig. 4

Fold change of metabolites and KEGG enrichment analysis bubble plot A: the x-axis shows the log2FC of differential metabolites, with red indicating upregulation and green indicating downregulation. B: the x-axis shows the pathway enrichment factor (Diff/Background) across omics, the y-axis lists KEGG pathways, color (red→yellow→green) indicates enrichment significance (P-value). Bubble shape denotes omics type (circle represents transcriptomics, triangle represents metabolomics); size reflects differential metabolite/gene counts, larger bubbles indicating higher counts."

Fig. 5

Flavonoid metabolic pathway diagram Boxes represent metabolites, and arrows indicate enzymes. The bar plot displays the relative levels of key metabolites in the control (0 d) versus waterlogging stress (4 d). The heatmap illustrates gene expression changes (0 d vs 4 d) with a green-to-red color gradient, where green indicates downregulation and orange represents upregulation. The metabolites are naringenin chalcone, naringenin, apigenin, dihydrokaempferol, eriodictyol, and luteolin; enzymes include chalcone isomerase, flavone synthase II, flavanone 3-hydroxylase, and flavonoid 3′,5′-hydroxylase/flavonoid 3′-monooxygenase. *** means significant difference at the 0.001 probability level."

[1] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展. 作物学报, 2025, 51: 287-300.
doi: 10.3724/SP.J.1006.2025.44121
Xie L L, Li Y L, Xu B B, Zhang X K. Mechanisms of waterlogging tolerance and genetic improvement in rapeseed (Brassica napus L.): a review. Acta Agron Sin, 2025, 51: 287-300 (in Chinese with English abstract).
[2] Karlova R, Boer D M, Hayes S, Testerink C. Root plasticity under abiotic stress. Plant Physiol, 2021, 187: 1057-1070.
doi: 10.1093/plphys/kiab392 pmid: 34734279
[3] Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crops Res, 2009, 113: 246-255.
[4] Yang M, Yang J, Su L, Sun K, Li D X, Liu Y Z, Wang H, Chen Z Q, Guo T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci, 2019, 289: 110282.
[5] Song J Y, Chen Y T, Jiang G S, Zhao J Y, Wang W J, Hong X F. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). J Plant Physiol, 2023, 291: 154120.
[6] Luo Y, Wang Y, Xie Y Y, Gao Y M, Li W Q, Lang S P. Transcriptomic and metabolomic analyses of the effects of exogenous trehalose on heat tolerance in wheat. Int J Mol Sci, 2022, 23: 5194.
[7] 吾木提汗. 豆科植物骆驼刺盐胁迫适应性研究. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2011.
Wu M T H. Study on the Salt Stress Adaptaion of Leguminous Plant Alhagi pseudoalhagi. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011 (in Chinese with English abstract).
[8] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
[9] Yu Y A, Wu Y X, He L Y. A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol, 2023, 113: 171-191.
[10] Khalid M, Rehman H M, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana I A, Atif R M, Zaman Q U, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. Int J Mol Sci, 2022, 23: 12913.
[11] Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681.
[12] Xu K N, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, MacKill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705-708.
[13] Qi H H, Wang J, Wang X, Liang K, Ke M C, Zheng X Q, Tang W B, Chen Z Y, Ke Y G, Yang P F, et al. ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression. Plant Biotechnol J, 2025, 23: 2062-2064.
[14] Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, et al. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in Chrysanthemum. J Exp Bot, 2024, 75: 1479-1492.
[15] Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lyu C, Zhu J, Chen Z H, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC Plant Biol, 2024, 24: 385.
doi: 10.1186/s12870-024-05091-8 pmid: 38724918
[16] Chen Y H, Zhang R P, Song Y M, He J M, Sun J H, Bai J F, An Z L, Dong L J, Zhan Q M, Abliz Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 2009, 134: 2003-2011.
doi: 10.1039/b907243h pmid: 19768207
[17] Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[18] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142
[19] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[20] Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot, 2000, 51: 89-97.
pmid: 10938799
[21] Linić I, Mlinarić S, Brkljačić L, Pavlović I, Smolko A, Salopek-Sondi B. Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in Chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants, 2021, 10: 2346.
[22] Ozfidan-Konakci C, Yildiztugay E, Alp F N, Kucukoduk M, Turkan I. Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants. Plant Physiol Biochem, 2020, 157: 264-275.
[23] Shah A, Smith D L. Flavonoids in agriculture: chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy, 2020, 10: 1209.
[24] Wang M, Zhang Y, Zhu C Y, Yao X Y, Zheng Z, Tian Z N, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Physiol Plant, 2021, 172: 1966-1982.
[25] Liang S M, Hashem A, Abd-Allah E F, Wu Q S. Root-associated symbiotic fungi enhance waterlogging tolerance of peach seedlings by increasing flavonoids and activities and gene expression of antioxidant enzymes. Chem Biol Technol Agric, 2023, 10: 124.
[26] 程六龙, 黄永春, 王常荣, 刘仲齐, 黄益宗, 张长波, 王晓丽. S-烯丙基-L-半胱氨酸缓解水稻种子幼根和幼芽镉胁迫机制. 环境科学, 2021, 42: 3037-3045.
pmid: 34032104
Cheng L L, Huang Y C, Wang C R, Liu Z Q, Huang Y Z, Zhang C B, Wang X L. Mechanism of S-allyl-L-cysteine in alleviating cadmium stress in rice seedling roots and shoots. Environ Sci, 2021, 42: 3037-3045 (in Chinese with English abstract).
doi: 10.13227/j.hjkx.202010061 pmid: 34032104
[27] Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan D K, Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 2022, 11: 3158.
[28] Li S X, Yang W Y, Guo J H, Li X N, Lin J X, Zhu X C. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem, 2020, 154: 1-10.
[29] Hartman S, Liu Z G, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H T, van Dongen N, Bosman F, Bassel G W, et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun, 2019, 10: 4020.
doi: 10.1038/s41467-019-12045-4 pmid: 31488841
[30] 丁宁, 海燕, 王晓晖, 屠鹏飞, 高博文, 史社坡. 白木香查尔酮异构酶基因的克隆鉴定与表达分析. 药学学报, 2021, 56: 630-638.
Ding N, Hai Y, Wang X H, Tu P F, Gao B W, Shi S P. Cloning and expression analysis of Chalcone isomerase from Aquilaria sinensis. Acta Pharm Sin, 2021, 56: 630-638 (in Chinese with English abstract).
[31] Pan J W, Sharif R, Xu X W, Chen X H. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci, 2021, 11: 627331.
[32] Zou X L, Jiang Y Y, Liu L, Zhang Z X, Zheng Y L. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol, 2010, 10: 189.
doi: 10.1186/1471-2229-10-189 pmid: 20738849
[33] Gibbs D J, Lee S C, Isa N M, Gramuglia S, Fukao T, Bassel G W, Correia C S, Corbineau F, Theodoulou F L, Bailey-Serres J, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479: 415-418.
[34] 闫雅如, 杨洪芸, 齐博文, 徐溪平, 刘雨雨, 王晓晖, 赵云芳, 史社坡, 刘晓, 屠鹏飞. 干旱胁迫对管花肉苁蓉组织培养体系中苯乙醇苷类成分含量的影响. 中草药, 2019, 50: 2452-2460.
Yan Y R, Yang H Y, Qi B W, Xu X P, Liu Y Y, Wang X H, Zhao Y F, Shi S P, Liu X, Tu P F. Effect of drought stress on accumulation of two respective phenylethanoid glycosides in tissue culture of Cistanche tubulosa. Chin Tradit Herb Drugs, 2019, 50: 2452-2460 (in Chinese with English abstract).
[35] Zou X R, Wei Y Y, Jiang S, Xu F, Wang H F, Zhan P P, Shao X F. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-phenylethanol against Botrytis cinerea. J Agric Food Chem, 2022, 70: 14468-14479.
[36] 刘美玲, 刘玉冰, 曹波. 液质联用法测定干旱胁迫下红砂(Reaumuria soongorica)叶片F3H、DFR酶活性. 生态学杂志, 2012, 31: 2158-2162.
Liu M L, Liu Y B, Cao B. Determination of Reaumuria soongorica leaf F3H and DFR activities under drought stress by using RP-HPLC-MS. Chin J Ecol, 2012, 31: 2158-2162 (in Chinese with English abstract).
[37] 火兴宇, 张宇, 王常荣, 齐麟, 刘斌, 黄雁飞, 黄永春. 硫化氢信号分子介导S-烯丙基-L-半胱氨酸调控水稻镉胁迫. 农业环境科学学报, 2025, 44: 1160-1168.
Huo X Y, Zhang Y, Wang C R, Qi L, Liu B, Huang Y F, Huang Y C. Hydrogen sulfide signaling molecule mediates the regulation of cadmium stress in rice by S-allyl-L-cysteine. J Agro-Environ Sci, 2025, 44: 1160-1168 (in Chinese with English abstract).
[38] Huo X Y, Wang C R, Huang Y C, Kong W Y, Wang X L. Effect of s-allyl-L-cysteine on nitric oxide and cadmium processes in rice (Oryza sativa L. sp. Zhongzao 35) seedlings. Toxics, 2024, 12: 805.
[39] Zhou J L, Tian L, Wang S X, Li H P, Zhao Y L, Zhang M B, Wang X L, An P P, Li C H. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize. Front Plant Sci, 2021, 12: 778717.
[40] Song Z H, Yang Q, Dong B Y, Li N, Wang M Y, Du T T, Liu N, Niu L L, Jin H J, Meng D, et al. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot, 2022, 73: 5992-6008.
[41] Wang H H, Liang X L, Wan Q, Wang X M, Bi Y R. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta, 2009, 230: 293-307.
[42] Wang M Y, Dong B Y, Song Z H, Qi M, Chen T, Du T T, Cao H Y, Liu N, Meng D, Yang Q, et al. Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp). Plant Physiol Biochem, 2023, 196: 381-392.
[43] Yu F, Tan Z D, Fang T, Tang K Y, Liang K, Qiu F Z. A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize. Genes, 2020, 11: 267.
[44] Jackson M, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol (Stuttg), 1999, 1: 274-287.
[45] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
[46] Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 223-250.
[47] Sairam R K, Kumutha D, Ezhilmathi K, Deshmukh P S, Srivastava G C. Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant, 2008, 52: 401-412.
[48] Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant, 2007, 29: 535-541.
[49] Zhao Z X, Qin T, Zheng H J, Guan Y, Gu W, Wang H, Yu D S, Qu J T, Wei J H, Xu W. Mutation of ZmDIR5 reduces maize tolerance to waterlogging, salinity, and drought. Plants, 2025, 14: 785.
[50] Kreuzwieser J, Rennenberg H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ, 2014, 37: 2245-2259.
[51] Loreti E, van Veen H, Perata P. Plant responses to flooding stress. Curr Opin Plant Biol, 2016, 33: 64-71.
doi: S1369-5266(16)30088-7 pmid: 27322538
[52] Licausi F, Kosmacz M, Weits D A, Giuntoli B, Giorgi F M, Voesenek L A C J, Perata P, van Dongen J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479: 419-422.
[53] Zeng R E, Chen T T, Wang X Y, Cao J, Li X, Xu X Y, Chen L, Xia Q, Dong Y L, Huang L P, et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front Plant Sci, 2021, 12: 601771.
[54] 王暄, 陈海霞. 植物ABCB转运蛋白研究进展. 生物技术通报, 2020, 36: 223-229.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0899
Wang X, Chen H X. Research progress on plant ABCB transporter. Biotechnol Bull, 2020, 36: 223-229 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0899
[55] 刘文献, 刘志鹏, 谢文刚, 王彦荣. 脂肪酸及其衍生物对植物逆境胁迫的响应. 草业科学, 2014, 31: 1556-1565.
Liu W X, Liu Z P, Xie W G, Wang Y R. Responses of fatty acid and its derivatives to stress in plants. Pratac Sci, 2014, 31: 1556-1565 (in Chinese with English abstract).
[56] Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem, 2016, 107: 344-353.
[57] Liu W C, Song R F, Zheng S Q, Li T T, Zhang B L, Gao X, Lu Y T. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol Plant, 2022, 15: 973-990.
[58] Kumari A, Fatnani D, Seth C S, Parida A K. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114.
[1] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[2] GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329.
[3] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[4] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[5] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[6] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[7] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[8] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[9] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[10] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
[11] YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581.
[12] ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617.
[13] ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628.
[14] JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388.
[15] ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .