Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2285-2294.doi: 10.3724/SP.J.1006.2025.54024

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’

JIA Xiao-Xia1,2(), QI En-Fang1,2, WEN Guo-Hong1,2,*(), MA Sheng1,2, HUANG Wei1,2, LYU He-Ping1,2, LI Jian-Wu1,2, QU Ya-Ying1,2, DING Ning1,2   

  1. 1Potato Research Institute of Gansu Academy of Agricultural Sciences / Gansu Engineering Laboratory of Potato Germplasm resources Innovation, Lanzhou 730070, Gansu, China
    2National Germplasm Resources Agricultural Experimental Station, Weiyuan 748201, Gansu, China
  • Received:2025-02-18 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-23
  • Contact: *E-mail: 251580436@qq.com
  • Supported by:
    Gansu Province Innovation-Driven Assistance Project(GXH20250325-3);China Agriculture Research System of MOF and MARA(CARS-09-P06);Special Project of Biotechnology Breeding of Gansu Academy of Agricultural Sciences(2025GAAS15);Project of the Central Government-Guided Local Science and Technology Development Funds(25ZYJA002-2)

Abstract:

To establish an efficient regeneration system for the new early-mid maturing, vegetable-use potato cultivar ‘Longshu 20’ and to develop novel germplasm resistant to glufosinate, we systematically evaluated the embryogenic callus induction efficiency and shoot regeneration capacity of test-tube plantlet stem segments cultured on MS medium supplemented with varying concentrations and combinations of 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), and gibberellic acid (GA3). The highest rates of embryogenic callus induction and shoot differentiation were observed on medium MS + 1.0 mg L-1 6-BA + 0.5 mg L-1 NAA + 4.5 mg L-1 GA3 + 3% sucrose. On day 30, the embryogenic callus induction rate reached 89.83%, while the shoot differentiation rate reached 91.81% by day 45. A Bar gene overexpression vector was constructed using recombinant DNA technology and introduced into stem segments via Agrobacterium-mediated transformation. After selection on MS medium containing 2.0 mg L-1 phosphinothricin (PPT), six independent transgenic lines were successfully obtained. Both transgenic and non-transgenic control lines were grown and treated with commercial glufosinate-ammonium at an active ingredient content of 1271 g hm-2 during the seedling stage. Within 9 days, all non-transgenic control plants had completely withered and died, while all transgenic lines exhibited stable resistance to glufosinate-ammonium. Phenotypic analysis at maturity revealed variation among transgenic lines in terms of tuber number per plant, yield per plant, and key quality traits. Notably, transgenic line S20-4 showed no significant differences from the non-transgenic control in tuber number, yield, or key quality parameters such as starch, crude protein, and reducing sugar content. These results demonstrate that S20-4 successfully integrates glufosinate resistance while concurrently maintaining the yield and quality traits of the recipient cultivar. The efficient regeneration system developed in this study provides a solid foundation for the genetic improvement of ‘Longshu 20’, and the transgenic line S20-4 represents a promising candidate for direct application in breeding programs targeting herbicide resistance and high yield.

Key words: potato, Longshu 20, regeneration system, Bar gene, glyphosate

Table 1

Composition and proportion of the regeneration medium"

培养基编号
Medium number
基础培养基
Basic medium
6-苄基腺嘌呤
6-BA (mg L-1)
萘乙酸
NAA (mg L-1)
赤霉素
GA3 (mg L-1)
A MS 1.00 0.25 2.00
B MS 2.00 0.25 4.50
C MS 3.00 0.25 7.00
D MS 1.00 0.50 4.50
E MS 2.00 0.50 7.00
F MS 3.00 0.50 2.00
G MS 1.00 0.75 7.00
H MS 2.00 0.75 2.00
I MS 3.00 0.75 4.50

Fig. 1

Schematic diagrams of the intermediate vectors pBI121, pAHC25, and the plant expression vector pBI121-Pro5S-Bar ColE1 ori: ColE1 origin of replication; CaMV35S: Cauliflower mosaic virus 35S promoter; gusA: β-glucuronidase gene; NOS-ter: nopaline synthase terminator; Promoter: ubiquitin promoter; GUS: β-glucuronidase gene; NOS 3': nopaline synthase gene 3' untranslated region; BAR: bialaphos resistance gene; pUCB: pUC backbone; ori V: origin of vegetative replication."

Table 2

Induction analysis of callus and adventitious buds on different culture media"

培养基编号
Medium number
外植体数
Number of explants
培养15 d时愈伤组织诱导率
Induction rate of callus tissue after 15 days of cultivation (%)
培养30 d时胚型愈伤组织诱导率
Induction rate of embryogenic
callus tissue after 30 days of
cultivation (%)
培养45 d时胚性愈伤不定芽诱导率
Induction rate of adventitious buds from embryogenic callus after 45 days of cultivation (%)
A 113 45.61±1.21 d 18.16±0.73 d 0.00±0.00 d
B 117 66.56±1.14 c 9.64±0.83 e 8.96±1.23 c
C 111 25.48±0.89 f 0.00±0.00 g
D 115 92.50±1.03 a 89.83±0.98 a 91.81±2.14 a
E 113 43.57±1.23 d 21.23±0.87 c 0.00±0.00 d
F 114 27.14±0.97 f 0.00±0.00 g
G 116 32.28±1.06 e 6.64±0.96 f 0.00±0.00 d
H 118 46.83±0.89 d 17.05±0.86 d 0.00±0.00 d
I 114 77.78±1.17 b 48.45±0.95 b 16.23±1.96 b

Fig. 2

Induction of S20 callus and screening of PPT resistant seedlings Composition and proportion of medium are the same as those given in Table 1. PPT: phosphinothricin; A and B: callus tissues cultured on medium D and E for 35 d, respectively; C: resistant seedlings regenerated on selected medium supplemented with + 2.0 mg L-1 PPT; D and E: in vitro plantlets of non-transgenic S20 and its Bar-transgenic lines cultured on MS medium containing 2.0 mg L-1 PPT."

Fig. 3

Restriction analysis detection of pBI121-Pro35S-Bar M: Marker III; 1 and 2 represent digested results of pBI121-35S- Bar respectively by EcoR I/Hind III and BamH I/Hind III."

Fig. 4

PCR identification and Bar gene expression analysis in transgenic lines A: PCR Analysis of PPT resistant transformant lines and their control, and M represents 200 bp DNA Ladder, CK is the negative control, and 1-6 are six different transgenic lines. B: expression analysis of the Bar gene in different transgenic lines, and S20-1, S20-2, S20-3, S20-4, S20-5, S20-6 are six different transgenic lines. Different lowercase letters denote significant differences among lines at the P < 0.05 level."

Fig. 5

Glufosinat-resistant analysis of transgenic and non-transgenic control of S20 A and B are S20 plants at 0 and 9 days after spraying glufosinat, respectively; B and D are Bar-transgenic plants of S20 at 0 and 9 days after spraying glufosinat, respectively; E is the control with clear water spraying; F and G are the field conditions of large and small plots 9 days after spraying glufosinate; H is the field scene after 20 days of spraying glyphosate."

Table 3

Analysis of tuber quality and yield per plant in S20 and its Bar-transgenic lines"

株系
名称
Name of strains
干物质含量
Content of
dry matter (%)
淀粉含量
Content of
starch (%)
粗蛋白含量
Content of crude protein (%)
还原糖含量
Content of
reduced sugar (%)
维生素C含量Content of vitamin C
(mg 100-1 g-1)
单株结薯数
Number of tubers per plant
单株产量
Yield of per
plant (g)
S20 17.80±1.24 ab 11.79±1.03 a 2.17±0.11 a 0.21±0.03 c 11.80±0.26 a 4.29±0.12 a 627.26±14.96 a
S20-1 17.34±0.97 ab 12.03±0.98 a 2.18±0.12 a 0.24±0.05 c 10.69±0.45 a 3.12±0.09 e 475.07±12.62 b
S20-2 15.06±1.02 b 11.96±1.32 a 2.21±0.06 a 0.48±0.02 a 11.02±0.69 a 3.98±0.15 b 509.94±21.07 b
S20-3 18.90±1.56 a 10.89±1.01 a 2.13±0.09 a 0.36±0.03 b 10.67±1.02 a 3.69±0.03 bc 391.78±18.74 c
S20-4 17.65±0.89 ab 11.98±0.89 a 2.23±0.10 a 0.22±0.02 c 11.96±0.98 a 4.33±0.08 a 635.12±21.04 a
S20-5 16.89±1.96 b 12.21±0.93 a 2.21±0.09 a 0.39±0.06 b 11.06±1.32 a 3.73±0.14 b 321.46±19.64 d
S20-6 16.07±1.47 b 11.32±0.93 a 2.15±0.07 a 0.37±0.05 b 10.78±1.23 a 3.48±0.18 cd 311.46±17.57 d
[1] Paul S, Farooq M, Bhattacharya S S, Gogoi N. Management strategies for sustainable yield of potato crop under high temperature. Arch Agron Soil Sci, 2017, 63: 276-287.
[2] 程亮. 青海省部分地区马铃薯Y病毒cp基因序列分析. 浙江农业学报, 2019, 31: 1888-1895.
doi: 10.3969/j.issn.1004-1524.2019.11.15
Cheng L. Analysis on cp gene sequences of potato virus Y from some places in Qinghai province. Acta Agric Zhejiangensis, 2019, 31: 1888-1895 (in Chinese with English abstract).
[3] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
Xu J F, Jin L P. Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017, 50: 990-1015 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.06.003
[4] 王宽, 祁利潘, 吴桂丽, 冯琰, 王磊, 尹江, 罗亚婷, 王燕, 刘畅, 龚学臣, 等. 中早熟马铃薯新品种‘北方 002’. 园艺学报, 2022, 49(增刊2): 141-142.
Wang K, Qi L P, Wu G L, Feng Y, Wang L, Yin J, Luo Y T, Wang Y, Liu C, Gong X C, et al. A new potato cultivar ‘Beifang 002’ of early maturity and good yield. Acta Hortic Sin, 2022, 49(S2): 141-142 (in Chinese with English abstract).
[5] 曲亚英, 白永杰, 李掌, 郑永伟, 文国宏, 李高峰, 齐恩芳, 李建武, 张荣, 马胜, 等. 马铃薯新品种陇薯20号的选育. 中国蔬菜, 2022, (9): 97-99.
Qu Y Y, Bai Y J, Li Z, Zheng Y W, Wen G H, Li G F, Qi E F, Li J W, Zhang R, Ma S, et al. A new potato variety—‘Longshu 20’. China Veg, 2022, (9): 97-99 (in Chinese with English abstract).
[6] 闫雷, 张远学, 邹莹, 张宏, 肖春芳, 王甄, 高剑华, 沈艳芬. 2020年全国马铃薯主产区田间杂草分布及除草剂使用调研分析. 黑龙江哈尔滨: 黑龙江科学技术出版社, 2021. pp 490-491.
Yan L, Zhang Y X, Zou Y, Zhang D H, Xiao C F, Wang Z, Gao J H, Shen Y F. Analysis of the Survey on the Distribution of Field Weeds and Herbicide Usage in the Main Potato Producing Areas of China in 2020. Harbin: Heilongjiang Science and Technology Press, 2021. pp 490-491 (in Chinese).
[7] 王喜刚, 郭成瑾, 庞全武, 张丽荣, 沈瑞清. 不同除草剂防除马铃薯田杂草效果及安全性评价. 宁夏农林科技, 2019, 60(7): 21-24.
Wang X G, Guo C J, Pang Q W, Zhang L R, Shen R Q. Assessment of effects and safety of different herbicides in controlling of weeds in potato fields. Ningxia J Agric For Sci Technol, 2019, 60(7): 21-24 (in Chinese with English abstract).
[8] Mayerová M, Madaras M, Soukup J. Effect of chemical weed control on crop yields in different crop rotations in a long-term field trial. Crop Prot, 2018, 114: 215-222.
[9] 李云河, 李香菊, 彭于发. 转基因耐除草剂作物的全球开发与利用及在我国的发展前景和策略. 植物保护, 2011, 37(6): 32-37.
Li Y H, Li X J, Peng Y F. Global development of herbicide- tolerant transgenic crops and a strategic prospect for China. Plant Prot, 2011, 37(6): 32-37 (in Chinese with English abstract).
[10] 苏少泉. 中国马铃薯生产与除草剂使用. 世界农药, 2009, 31(1): 4-6.
Su S Q. Potato production and herbicide use in China. World Pestic, 2009, 31(1): 4-6 (in Chinese with English abstract).
[11] Krausz R F, Kapusta G, Matthews J L, Baldwin J L, Maschoff J. Evaluation of glufosinate-resistant corn (Zea mays) and glufosinate: efficacy on annual weeds. Weed Technol, 1999, 13: 691-696.
[12] Sparks C A, Doherty A L H, Rustgi S. Genetic transformation of common wheat (Triticum aestivum L.) using biolistics. In: Biolistic DNA Delivery in Plants, New York, NY: Springer US, 2020. pp 229-250.
[13] 陈东亮, 崔翠, 任义英, 王倩, 李加纳, 唐章林, 周清元. 草铵膦胁迫下油菜苗期叶片药害相关性状的全基因组关联分析. 作物学报, 2018, 44: 542-553.
doi: 10.3724/SP.J.1006.2018.00542
Chen D L, Cui C, Ren Y Y, Wang Q, Li J N, Tang Z L, Zhou Q Y. Genome-wide association analysis of some phytotoxicity related traits at seedling stage in rapeseed under glufosinate stress. Acta Agron Sin, 2018, 44: 542-553 (in Chinese with English abstract).
[14] 王园园, 刘琳莉, 李雷, 戴伟民, 强胜, 宋小玲. 复合性状转cry2A/bar基因水稻T2A-1的生存竞争能力. 南京农业大学学报, 2020, 43: 862-868.
Wang Y Y, Liu L L, Li L, Dai W M, Qiang S, Song X L. Survival competitive ability of stacked transgenic rice T2A-1 with cry2A/bar. J Nanjing Agric Univ, 2020, 43: 862-868 (in Chinese with English abstract).
[15] 崔少彬, 邸宏, 卢翠华, 杨志超, 林忠平, 胡鸢雷. 农杆菌介导ODREB2B基因转化马铃薯的研究. 中国蔬菜, 2009, (16): 20-25.
Cui S B, Di H, Lu C H, Yang Z C, Lin Z P, Hu Y L. Studies on Agrobacterium-mediated transformation of potato with ODREB2B gene. China Veg, 2009, (16): 20-25 (in Chinese with English abstract).
[16] 贾小霞, 齐恩芳, 王一航, 文国宏, 龚成文, 王红梅, 李建武, 马胜, 胡新元. 转录因子DREB1A基因和Bar基因双价植物表达载体的构建及对马铃薯遗传转化的研究. 草业学报, 2014, 23(3): 110-117.
doi: 10.11686/cyxb20140312
Jia X X, Qi E F, Wang Y H, Wen G H, Gong C W, Wang H M, Li J W, Ma S, Hu X Y. Construction of a bivalent plant expression vector of DREB1A and Bar genes and studies of genetic transformation of potato. Acta Pratac Sin, 2014, 23(3): 110-117 (in Chinese with English abstract).
[17] 文国宏, 李高峰, 李建武, 张荣, 马胜, 贾小霞. 陇薯系列马铃薯品种营养品质评价及相关性分析. 核农学报, 2018, 32: 2162-2169.
doi: 10.11869/j.issn.100-8551.2018.11.2162
Wen G H, Li G F, Li J W, Zhang R, Ma S, Jia X X. Nutrition quality evaluation and correlation analysis of Longshu potato varieties named with series. J Nucl Agric Sci, 2018, 32: 2162-2169 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2018.11.2162
[18] 李颖, 李广存, 李灿辉, 屈冬玉, 黄三文. 二倍体杂种优势马铃薯育种的展望. 中国马铃薯, 2013, 27(2): 96-99.
Li Y, Li G C, Li C H, Qu D Y, Huang S W. Prospects of diploid hybrid breeding in potato. Chin Potato J, 2013, 27(2): 96-99 (in Chinese with English abstract).
[19] Halterman D, Guenthner J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. Am J Potato Res, 2016, 93: 1-20.
[20] Wang H F, Russa M L, Qi L S. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem, 2016, 85: 227-264.
doi: 10.1146/annurev-biochem-060815-014607 pmid: 27145843
[21] 屈聪玲, 贺榆婷, 王瑞良, 杨致荣, 王兴春. 植物转基因技术的过去、现在和未来. 山西农业科学, 2017, 45: 1376-1380.
Qu C L, He Y T, Wang R L, Yang Z R, Wang X C. The past, present and future of plant transgenic technology. J Shanxi Agric Sci, 2017, 45: 1376-1380 (in Chinese with English abstract).
[22] 王萍, 王罡, 季静. 马铃薯两个基因型不同外植体的组织培养与植株再生. 中国马铃薯, 2006, 20(6): 326-328.
Wang P, Wang G, Ji J. Tissue culture and plant regeneration of various explants of two potato genotypes. Chin Potato J, 2006, 20(6): 326-328 (in Chinese with English abstract).
[23] 宋倩娜, 宋慧洋, 李京昊, 段永红, 梅超, 冯瑞云. 马铃薯转录因子StFBH3对非生物逆境胁迫的响应分析. 作物学报, 2025, 51: 249-259.
Song Q N, Song H Y, Li J H, Duan Y H, Mei C, Feng R Y. Response of transcription factor StFBH3 under abiotic stress in potato. Acta Agron Sin, 2025, 51: 249-259 (in Chinese with English abstract).
[24] 巩慧玲, 林红霞, 任小丽, 李彤, 王晨霞, 白江平. StvacINV1负调控马铃薯的耐旱性. 作物学报, 2023, 49: 3007-3016.
doi: 10.3724/SP.J.1006.2023.34015
Gong H L, Lin H X, Ren X L, Li T, Wang C X, Bai J P. StvacINV1 negatively regulates drought tolerance in potato. Acta Agron Sin, 2023, 49: 3007-3016 (in Chinese with English abstract).
[25] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响. 作物学报, 2023, 49: 988-995.
doi: 10.3724/SP.J.1006.2023.24082
Li H Y, Li J Y, Li X, Ye G J, Zhou Y, Wang J. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato. Acta Agron Sin, 2023, 49: 988-995 (in Chinese with English abstract).
[26] 陈兆贵, 林燕文, 李希陶, 温嘉嘉, 林静文. 马铃薯植株再生和遗传转化技术研究进展. 智慧农业导刊, 2023, 3(9): 12-15.
Chen Z G, Lin Y W, Li X T, Wen J J, Lin J W. Research progress of plant regeneration and genetic transformation of potatoes. J Smart Agric, 2023, 3(9): 12-15 (in Chinese with English abstract).
[27] Oxtoby E, Hughes M A. Progress on genetically engineering herbicide-resistance into crops. Biol Engin Prog, 1997, 17: 14-17.
[28] 吴爱忠, 唐克轩, 潘俊松, 蔡润, 沈大棱, 潘重光. 转基因培育抗除草剂水稻. 遗传学报, 2000, 27: 992-998.
Wu A Z, Tang K X, Pan J S, Cai R, Shen D L, Pan C G. Production of herbicide-resistant rice with transforming heterogene. Acta Genet Sin, 2000, 27: 992-998.
[29] Bonny S. Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects: a review. Agron Sustain Dev, 2008, 28: 21-32.
[30] Märländer B, Bückmann H. Genetically modified varieties in Germany: status and prospects with special respect of a sustainable sugar beet cultivation. Zuckerind, 1999, 124: 943-946.
[31] Oard J H, Linscombe S D, Braverman M P, Jodari F, Blouin D C, Leech M, Kohli A, Vain P, Cooley J C, Christou P. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996, 2: 359-368.
[32] 强胜, 宋小玲, 戴伟民. 抗除草剂转基因作物面临的机遇与挑战及其发展策略. 农业生物技术学报, 2010, 18(1): 114-125.
Qiang S, Song X L, Dai W M. The opportunity and challenge faced by transgenic herbicide-resistant crops and their development strategy. J Agric Biotechnol, 2010, 18(1): 114-125 (in Chinese with English abstract).
[33] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002 (in Chinese).
[34] 曾凡锁, 詹亚光. 转基因植物中外源基因的整合特性及其研究策略. 植物学通报, 2004, 39: 565-577.
Zeng F S, Zhan Y G. Integration of exogenous genes in transgenic plant genomes: characteristics and approaches. Chin Bull Bot, 2004, 39: 565-577 (in Chinese with English abstract).
[35] Kumar S, Fladung M. Gene stability in transgenic aspen (Populus): II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 2001, 213: 731-740.
pmid: 11678277
[36] Cao X L, Zhang Y T, Payer L M, Lords H, Steranka J P, Burns K H, Xing J C. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol, https://doi.org/10.1186/s13059-020-02101-4.
[37] 赵海祯, 梁哲军, 齐宏立, 王玉香, 聂安全, 吴秀峰. 外源基因对棉花光合生产和分配的影响. 华北农学报, 2005, 20 (1): 41-45.
doi: 10.3321/j.issn:1000-7091.2005.01.010
Zhao H Z, Liang Z J, Qi H L, Wang Y X, Nie A Q, Wu X F. Effects on production and distribution of photosynthate of external gene to cottons. Acta Agric Boreali-Sin, 2005, 20(1): 41-45 (in Chinese with English abstract).
[38] Bao Y, Liu R J, Li Y B, Wang Y, Gao G J, Zhang Q G, Liu X, Jiang G H, He Y Q. QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breed Sci, 2014, 64: 231-239.
[39] Ramakrishnan M, Satish L, Kalendar R, Narayanan M, Kandasamy S, Sharma A, Emamverdian A, Wei Q, Zhou M. The dynamism of transposon methylation for plant development and stress adaptation. Int J Mol Sci, 2021, 22: 11387.
[40] 贾小霞, 齐恩芳, 马胜, 胡新元, 王一航, 文国宏, 龚成文, 李建武. 转DREB1A/Bar双价基因马铃薯的耐旱性及除草剂抗性分析. 草业学报, 2015, 24(11): 58-64.
doi: 10.11686/cyxb2014533
Jia X X, Qi E F, Ma S, Hu X Y, Wang Y H, Wen G H, Gong C W, Li J W. Analysis of drought tolerance and herbicide resistance in over-expressing DREB1A/Bar transgenic potato. Acta Pratac Sin, 2015, 24(11): 58-64 (in Chinese with English abstract).
[41] 贾小霞, 马胜, 齐恩芳, 吕和平, 刘石, 黄伟, 李掌, 曲亚英. 不同除草剂对转Bar基因马铃薯田间杂草的防效及安全性分析. 核农学报, 2022, 36: 1026-1033.
doi: 10.11869/j.issn.100-8551.2022.05.1026
Jia X X, Ma S, Qi E F, Lyu H P, Liu S, Huang W, Li Z, Qu Y Y. Safety assessment of different herbicides to Bar-transgenic potato and control effect on field weeds. J Nucl Agric Sci, 2022, 36: 1026-1033 (in Chinese with English abstract).
[1] ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546.
[2] ZHU Jin-Cheng, YANG Qiu-Hua, CHENG Li-Xiang, LI Wen-Li, SHI Ming-Ming, LI Hui-Xia, ZHANG Feng. Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses [J]. Acta Agronomica Sinica, 2025, 51(9): 2307-2317.
[3] YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411.
[4] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[5] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[6] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[7] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[8] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[9] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[10] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[11] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[14] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[15] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!