Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2266-2284.doi: 10.3724/SP.J.1006.2025.51028

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association analysis of stomatal-related traits in wheat leaves

LI Lu-Qi1,2(), CHENG Yu-Kun1,2, BAI Bin3, LEI Bin4, GENG Hong-Wei1,2,*()   

  1. 1College of Agronomy / Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Joint International Research Laboratory of Crop Biological Breeding along the Silk Road Economic Belt, Urumqi 830052, Xinjiang, China
    3Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    4Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2025-03-11 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-13
  • Contact: *E-mail: hw-geng@163.com E-mail:1455812032@qq.com;hw-geng@163.com
  • Supported by:
    Xinjiang Uygur Autonomous Region Department of Science and Technology, the National Natural Science Fund for Distinguished Young Scholars(2022D01E46);Xinjiang Uygur Autonomous Region Key Research and Development Program(2023B02006);Xinjiang Uygur Autonomous Region Youth Science and Technology Talent Program(2022TSYCCX0079)

Abstract:

Wheat stomata are microscopic pores that regulate photosynthesis and transpiration, playing a critical role in determining yield. Understanding the genetic mechanisms underlying stomatal traits and identifying candidate genes associated with these characteristics are essential for improving wheat productivity. In this study, 276 winter wheat varieties (lines) were evaluated under two irrigation treatments—normal irrigation and drought stress. Stomatal traits, including stomatal density, average stomatal area, and stomatal pore proportion, were measured at both the heading and filling stages. A genome-wide association study (GWAS) was conducted using a 90K wheat SNP chip to analyze these traits. The results revealed significant phenotypic variation in stomatal traits across the two irrigation regimes and developmental stages, with coefficients of variation ranging from 0.06 to 0.28. GWAS identified 88 loci significantly associated with stomatal traits across 20 chromosomes, excluding chromosome 4D (P < 0.001). Among these, four stable genetic loci related to average stomatal area were identified on chromosomes 1B, 3A, and 6A, explaining 2.78% to 6.55% of the phenotypic variance. These loci were all detected during the filling stage under normal irrigation. Two loci associated with stomatal density were identified at both the heading and filling stages: Ex_c69429_328 on chromosome 6A under normal irrigation explained 2.31% to 3.06% of the variation, while BS00064423_51 on chromosome 4A under drought stress accounted for 4.40% to 6.09%. Additionally, eight loci with pleiotropic effects were identified on chromosomes 1A, 1B, 3A, 4A, 5A, 6A, and 6D, explaining 1.25% to 7.31% of the phenotypic variation. Haplotype analysis was performed on loci with a contribution rate greater than 5.00% that were detected in at least two environments or associated with two or more traits. Notably, the wsnp-Ex_rep_c69627_68580121 locus (R2 = 6.47%), significantly associated with both average stomatal area and stomatal pore proportion, exhibited two haplotypes—Hap1 and Hap2. Among the 276 wheat lines, those carrying Hap1 (frequency: 81.20%) had a significantly smaller average stomatal area than those with Hap2 (frequency: 18.80%) (P < 0.05). Haplotype distribution varied across wheat-growing regions, with Hap1 most prevalent in the southwest winter wheat region, while Hap2 was more common in northern regions. A total of nine candidate genes associated with stomatal traits were identified based on loci detected in multiple environments and those with pleiotropic effects. These genes are likely involved in stomatal development, photosynthesis, and stress responses, offering promising targets for further research and genetic improvement of wheat stomatal traits.

Key words: wheat, stomata, genome-wide association analysis, haplotype, candidate genes

Table 1

Statistical analysis of phenotypic variation in the population across different environments"

性状
Trait
时期
GS
环境
Environment
处理
Treatment
最小值
Min.
最大值
Max.
均值
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
气孔密度
SD (No. mm-2)
抽穗期
HS
E1 NI 47.71 79.17 60.63 5.21 0.09 0.56 0.60
DS 44.79 90.42 60.35 7.62 0.13 0.97 1.20
E2 NI 50.42 94.38 68.82 a 5.87 0.09 0.05 1.00
DS 44.79 90.42 71.96 b 5.64 0.08 -0.35 2.18
BLUE NI 50.42 82.61 64.72 a 4.37 0.07 0.27 0.78
DS 44.79 90.42 66.15 b 5.07 0.08 0.42 2.72
灌浆期
FS
E1 NI 47.92 78.33 60.90 a 5.63 0.09 0.15 -0.37
DS 52.50 100.83 69.63 b 7.17 0.10 0.55 0.95
E2 NI 54.17 92.08 71.82 a 5.48 0.08 0.27 1.34
DS 52.50 100.83 75.78 b 6.21 0.08 0.40 1.29
BLUE NI 54.17 79.90 66.36 a 4.22 0.06 0.27 0.63
DS 52.50 100.83 72.70 b 5.40 0.07 0.58 3.05
气孔平均面积
ASA (μm2)
抽穗期
HS
E1 NI 1258.58 4179.35 2130.16 416.53 0.20 1.44 4.40
DS 1230.41 4940.16 2061.60 529.40 0.26 2.27 7.83
E2 NI 1276.98 4314.03 1965.63 a 392.69 0.20 2.02 6.94
DS 1113.76 4643.17 2063.41 b 450.51 0.22 1.79 5.37
BLUE NI 1393.89 3573.64 2047.90 285.90 0.14 1.13 3.07
DS 1366.31 4395.09 2078.81 432.98 0.21 2.38 8.15
灌浆期
FS
E1 NI 1126.62 4687.50 2144.75 a 564.62 0.26 1.13 1.94
DS 1454.86 4313.81 2319.45 b 419.54 0.18 0.87 1.55
E2 NI 1561.86 4142.42 2333.74 439.86 0.19 0.87 1.06
DS 1309.23 4963.83 2357.83 566.99 0.24 1.29 2.69
BLUE NI 1452.04 4142.42 2239.25 379.54 0.17 1.03 2.49
DS 1536.35 3246.55 2294.21 316.03 0.14 0.46 0.04
气孔所占比
SPP (%)
抽穗期
HS
E1 NI 8.37 23.47 12.77 2.46 0.19 1.31 2.94
DS 7.85 23.40 12.46 2.81 0.23 1.25 1.67
E2 NI 7.73 26.21 13.47 a 2.86 0.21 1.42 4.04
DS 7.80 26.08 14.56 b 2.74 0.19 1.24 2.69
BLUE NI 9.30 19.96 13.12 a 1.87 0.14 0.82 1.17
DS 8.91 22.33 13.51 b 2.00 0.15 0.98 1.59
灌浆期
FS
E1 NI 6.61 25.75 12.97 a 3.62 0.28 0.87 0.69
DS 9.93 25.35 15.73 b 2.69 0.17 0.50 0.34
E2 NI 9.62 23.40 16.35 2.66 0.16 0.18 -0.23
DS 10.18 25.24 16.78 2.63 0.16 0.50 0.31
BLUE NI 9.48 22.41 14.66 a 2.34 0.16 0.54 0.49
DS 12.03 23.53 16.25 b 1.98 0.12 0.35 0.21

Table 2

Population phenotypic variance analysis under different treatments"

性状
Trait
时期
Growth stage
处理
Treatment
均方值 Mean square 广义遗传力H2
基因型
Genotype (G)
环境
Environment (E)
基因型×环境
G×E
气孔密度SD 抽穗期HS NI 76.29*** 18,518.82*** 46.79*** 0.53
DS 102.79*** 37,173.04*** 76.72*** 0.49
灌浆期FS NI 71.08*** 32,919.59*** 52.46*** 0.45
DS 116.64*** 10,469.03*** 63.18*** 0.57
气孔平均面积ASA 抽穗期HS NI 326,951.03*** 7,471,329.00*** 328,452.19*** 0.28
DS 822,431.25*** 399,662.53*** 681,708.94*** 0.20
灌浆期FS NI 576,210.81*** 9,858,272.00*** 448,330.50*** 0.43
DS 399,508.41*** 703,669.13*** 312,814.47*** 0.34
气孔所占比SPP 抽穗期HS NI 13.99*** 135.53*** 14.39*** 0.27
DS 15.96*** 1217.26*** 14.85*** 0.31
灌浆期FS NI 21.94*** 3161.25*** 18.44*** 0.45
DS 15.75*** 299.87*** 12.64*** 0.39

Table S1

Distribution of wheat varieties (lines) based on BLUE values in different wheat-growing regions"

性状
Trait
时期
GS
处理
Treatment
国内品种(系)Domestic varieties (lines) 国外品种
Abroad varieties
黄淮冬麦区
Huang-Huai winter wheat region
北部冬麦区
Northern winter wheat region
长江中下游冬麦区
Middle and lower reaches of the Yangtze River winter wheat region
西南冬麦区
Southwest winter wheat region
气孔密度
SD
(No. mm-2)
抽穗期HS NI 豫麦34, 豫麦18, 山农20, 豫麦35
Yumai 34, Yumai 18, Shannong 20, Yumai 35
洋小麦, 中麦415, 石4185, 观35, CA1133, 北京841, 新麦37
Yangxiaomai, Zhongmai 415, Shi 4185, Guan 35, CA1133, Beijing 841, Xinmai 37
华2459, 淮麦18, 扬麦9号, 淮麦21
Hua 2459, Huaimai 18, Yangmai 9, Huaimai 21
绵农4号
Miannong 4
Nidera Baguette 10, STARSHINA, Lovrin10, Abodanza
DS 豫麦34, 泰山5号, 济南13, 周麦11
Yumai 34, Taishan 5, Jinan13, Zhoumai 11
洋小麦, 北京841, 衡观33, CA1133, CA0958
Yangxiaomai, Beijing 841, Hengguan 33, CA1133, CA0958
连麦2号, 皖麦50, 皖麦29
Lianmai 2, Wanmai 50, Wanmai 29
绵农4号, 川麦49, 川育23, 川农23, 绵阳26
Miannong 4, Chuanmai 49, Chuanyu 23, Chuannong 23, Mianyang 26
Lampo, Abodanza, TX03A0148
灌浆期FS NI 豫麦34, 85中33, 鲁麦9号, 豫麦21, 丰产3号, 兰考906
Yumai 34, 85 Zhong 33, Lumai 9, Yumai21, Fengchan 3, Lankao 906
丰抗2号, CA1090, 北京841, 中麦415, 石4185
Fengkang 2, CA1090, Beijing 841, Zhongmai 415, Shi 4185
川麦49
Chuanmai 49
C39, MV05-08, MV LAURA, Norin 67, Klein Jabal 1, Nidera Baguette 20, F498U1-1021 / BOEMA, Festin
DS 碧蚂1号, 丰产3号
Nima 1, Fengchan 3
洋小麦, CA0958, 观35, 北京841, 农大211
Yangxiaomai, CA0958, Guan 35, Beijing 841, Nongda211
镇麦168, 皖麦38, 淮麦18, 鄂麦11
Zhenmai 168,Wanmai 38, Huaimai 18, Emai11
绵农4号, 川麦49, 川农23, 川育23
Miannong 4, Chuanmai 49, Chuannong 23,Chuanyu 23
Festin, Abodanza, Aca 801, Lovrin13, KNIISH 46
气孔平均面积ASA (μm2) 抽穗期HS NI 85中33, 陕715, 淄选2号, 中麦895, 周麦16, 矮丰3号, 豫麦50, 豫麦34, 豫麦18
85 Zhong 33, Shaan 715, Zixuan 2, Zhongmai 895, Zhoumai 16, Aifeng 3,Yumai 50, Yumai 34, Yumai 18
科衡6654
Keheng 6654
皖麦29
Wanmai 29
川麦49, 科成麦1号, 绵阳26
Chuanmai 49, Kechengmai 1, Mianyang 26
C39, Fr03711, Abodanza, Kitanokaori, MV LAURA, Aca 601
DS 豫麦7号, 周麦13, 碧蚂1号, 泰山5号, 豫麦34, 85中33
Yumai 7, Zhoumai 13, Bima1, Taishan 5, Yumai 34, 85 Zhong 33
科衡6654, 邯6172, 洋小麦
Keheng 6654, Han 6172, Yangxiaomai
扬麦10号, 皖麦29, 皖麦50
Yangmai 10, Wanmai 29, Wanmai 50
川麦49, 绵农4号, 绵阳26
Chuanmai 49, Miannong 4, Mianyang 26
BRUTA, Darius, Abodanza, Norin 61, Aztec
灌浆期FS NI 豫麦35, 中892, 淄麦12, 新麦19, 陕农78-59
Yumai 35, Zhong 892, Zimai 12, Xinmai 19, Shaannong 78-59
衡观33, 金禾9123, 石家庄15
Hengguan 33, Jinhe 9123, Shijiazhuang 15
扬麦10号, 鄂麦14, 鄂麦21, 扬麦9号, 宁麦13
Yangmai10, Emai 14, Emai 21, Yangmai 9, Ningmai 13
川麦49, 川麦107, 川麦47, 科成麦1号, 绵阳26
Chuanmai 49, Chuanmai 107, Chuanmai 47, Kechengmai 1, Mianyang 26
NSA09-3645, Festin
DS PH82-2, 临旱2号, 西农291, 85中33, 郑麦366, 丰产3号
PH82-2, Linhan 2, Xinong 291, 85 Zhong 33, Zhengmai 366, Fengchan 3
邯6172, 宁冬10
Han 6172, Ningdong 10
扬麦9号, 鄂麦14, 皖麦29, 皖麦19
Yangmai 9, Emai 14, Wanmai 29, Wanmai 19
绵农4号, 川麦49, 川麦107, 绵阳26
Miannong 4, Chuanmai 49, Chuanmai 107, Mianyang 26
Abodanza, Klein Jabal 1, Aca 801, Kitanokaori
气孔所占比SPP (%) 抽穗期HS NI 中麦895, 周麦16, 临抗12, 郑引1号, 85中33, 中麦871, 豫麦50, 临麦2号, 周麦18, 济南17, 矮抗58
Zhongmai 895, Zhoumai 16, Linkang 12, Zhengyin 1, 85 Zhong 33, Zhongmai 871, Yumai 50, Linmai 2,Zhoumai 18, Jinan 17, Aikang 58
CA0958 皖麦29, 皖麦33, 皖麦50
Wanmai 29, Wanmai 33, Wanmai 50
川麦49, 科成麦1号, 内麦9号
Chuanmai 49, Kechengmai 1, Neimai 9
Aca 601, Fr03711
DS 陕优225, 周麦13, 临旱2号, 周麦18, 郑引1号, 矮抗58, 85中33, 洛麦21, 碧蚂1号, 西农979-005
Shaanyou 225, Zhoumai 13, Linhan 2, Zhoumai 18, Zhengyin 1, Aikang 58, 85 Zhong 33, Luomai 21, Bima1, Xinong 979-005
京冬8号, 科衡6654, 宁冬10, 邯6172
Jingdong 8, Keheng 6654, Ningdong 10, Han 6172
扬麦10号
Yangmai 10
Aztec, Salmone, BRUTA, Darius, DONSKI-93
灌浆期FS NI 陕优225, 豫麦57, 中892, 济麦20, 豫麦35, 淄麦12, 豫麦49, 陕农78-59, 周麦28
Shaanyou 225, Yumai 57, Zhong 892, Jimai 20, Yumai 35, Zimai 12, Yumai 49, Shaannong 78-59, Zhoumai 28
高优503, CA0816(白)
Gaoyou 503, CA0816 (white)
扬麦10号, 鄂麦14, 皖麦52, 宁麦13
Yangmai 10, Emai 14, Wanmai 52, Ningmai 13
川麦47, 川麦107, 科成麦1号
Chuanmai 47, Chuanmai 107, Kechengmai 1
NSA09-3645, HK1/6/NVSR3/
5/BEZ/TVR/5/CFN/BEZ//
SU92/CI13645/3NAI60
DS PH82-2, 中麦895, 郑麦366, 洛麦21, 周麦18, 周麦16, 临旱2号, 豫麦57, 中麦871, 新麦9号, 11CA40
PH82-2, Zhongmai 895, Zhengmai 366, Luomai 21, Zhoumai 18, Zhoumai 16, Linhan 2, Yumai 57, Zhongmai 871, Xinmai 9, 11CA40
皖麦19, 鄂麦14, 皖麦52, 皖麦29, 扬麦9号
Wanmai 19, Emai 14, Wanmai 52, Wanmai 29, Yangmai 9
川麦47
Chuanmai 47
Abodanza, Kitanokaori, Klein Jabal 1

Table S2

Distribution and polymorphism of markers"

染色体
Chromosome
标记数目
No. of marker
染色体长度
Chromosome length (Mb)
标记密度
Density of marker (Mb)
遗传多样性
Genetic diversity
多态信息量 PIC
平均值
Mean
变异范围 Range
1A 1243 592.38 0.48 0.32 0.26 0.01-0.38
1B 1292 688.60 0.53 0.33 0.27 0.02-0.38
1D 563 495.14 0.88 0.31 0.25 0.02-0.38
2A 1120 780.46 0.70 0.30 0.25 0.02-0.38
2B 1245 799.62 0.64 0.32 0.26 0.01-0.38
2D 472 650.94 1.38 0.31 0.25 0.01-0.38
3A 874 748.99 0.86 0.32 0.26 0.01-0.38
3B 1080 829.32 0.77 0.33 0.27 0.01-0.38
3D 224 613.92 2.74 0.30 0.25 0.02-0.38
4A 693 741.73 1.07 0.30 0.25 0.01-0.38
4B 565 672.56 1.19 0.32 0.26 0.02-0.38
4D 98 508.58 5.19 0.31 0.25 0.09-0.37
5A 955 709.43 0.74 0.36 0.29 0.01-0.38
5B 1142 712.82 0.62 0.36 0.28 0.01-0.38
5D 238 563.41 2.37 0.31 0.25 0.01-0.38
6A 996 617.40 0.62 0.34 0.27 0.02-0.38
6B 1066 720.82 0.68 0.32 0.26 0.01-0.38
6D 318 472.61 1.49 0.31 0.25 0.02-0.38
7A 1144 736.44 0.64 0.31 0.25 0.01-0.38
7B 856 750.49 0.88 0.32 0.26 0.01-0.38
7D 257 637.17 2.48 0.29 0.24 0.04-0.38
A型总数
Total genome A
7025 4926.82 0.70 0.32 0.26 0.01-0.38
B型总数
Total genome B
7246 5174.23 0.71 0.33 0.27 0.01-0.38
Total genome D 2170 3941.77 1.82 0.31 0.25 0.01-0.38
总数
Total
16,441 14,042.83 0.85 0.32 0.26 0.01-0.38

Fig. 1

Population structure analysis of 276 wheat varieties (lines) A: group structure diagram; B: the estimation of ?K value in population; C: principal component analysis; D: relationship analysis."

Table 3

Significance analysis of stomatal-related traits among different subpopulations"

性状
Trait
亚群
Subpopulation
抽穗期HS 灌浆期FS
正常灌溉NI 干旱胁迫DS 正常灌溉NI 干旱胁迫DS
气孔密度SD Group1 64.34 a 66.18 a 65.98 a 72.41 a
Group2 65.30 a 66.10 a 67.06 a 73.51 a
Group3 64.77 a 66.16 a 66.28 a 72.41 a
气孔平均面积ASA Group1 2026.00 b 2100.68 a 2204.66 a 2283.14 a
Group2 2116.72 a 2126.79 a 2321.59 a 2324.24 a
Group3 2017.84 b 2015.70 a 2215.55 a 2283.30 a
气孔所占比SPP Group1 12.87 b 13.75 a 14.32 b 16.09 a
Group2 13.65 a 13.44 a 15.35 a 16.65 a
Group3 12.00 b 13.22 a 14.54 b 16.14 a

Fig. 2

Manhattan plots of stomatal related traits with BLUE values under different treatments Abbreviations are the same as those given in Table 1."

Fig. S1

QQ plots of stomatal related traits with BLUE values under different treatments Abbreviations are the same as those given in Table 1."

Table 4

Stable loci significantly associated with stomatal traits in wheat"

性状
Trait
时期
Growth stage
处理
Treatment
环境
Environ-
ment
标记
Marker
染色体
Chr.
物理位置
Physical
Position (Mb)
P
P-value
贡献率
R2 (%)
气孔密度
SD
抽穗期/灌浆期HS/FS 干旱胁迫DS E1 BS00064423_51 4A 627.82 3.76E-04-
8.83E-04
4.40-
6.09
抽穗期/灌浆期HS/FS 正常灌溉NI BLUE Ex_c69429_328 6A 2.40 7.99E-05-
7.33E-04
2.31-
3.06
气孔平均
面积
ASA
灌浆期FS 正常灌溉NI E1/BLUE Kukri_c13458_226 1B 452.28 1.62E-04-
4.15E-04
5.87-
6.55
灌浆期FS 正常灌溉NI E1/BLUE Kukri_c1308_2236 3A 650.04 1.12E-04-
8.66E-04
3.42-
3.94
灌浆期FS 正常灌溉NI E2/BLUE wsnp_Ex_rep_c102011_87270703 6A 108.07-109.99 1.58E-04-
7.90E-04
2.78-
6.22
灌浆期FS 正常灌溉NI E2/BLUE wsnp_Ra_c16745_25482384 6A 112.58-115.02 2.46E-04-
8.94E-04
3.31-
5.71

Table 5

Genetic loci significantly associated with two stomatal traits"

性状
Trait
处理
Treatment
标记
Marker
染色体
Chr.
物理位置
Physical
position (Mb)
P
P-value
贡献率
R2 (%)
气孔平均面积/气孔所占比ASA/SPP 正常灌溉/干旱胁迫NI/DS Kukri_c45512_193 1A 533.90 4.40E-04-
9.92E-04
4.20-
4.88
气孔平均面积/气孔所占比ASA/SPP 正常灌溉NI Kukri_c13458_226 1B 452.28 1.62E-04-
6.89E-04
4.02-
6.55
气孔平均面积/气孔所占比ASA/SPP 正常灌溉NI Kukri_c1308_2236 3A 650.04 1.12E-04-
8.66E-04
1.25-
3.42
气孔密度/气孔所占比SD/SPP 正常灌溉/干旱胁迫NI/DS Kukri_c9259_421 4A 673.07 4.88E-04-
9.20E-04
3.03-
5.50
气孔密度/气孔所占比SD/SPP 正常灌溉/干旱胁迫NI/DS tplb0043g09_926 5A 395.06 3.95E-04-
8.13E-04
5.00-
7.31
气孔平均面积/气孔所占比ASA/SPP 正常灌溉/干旱胁迫NI/DS wsnp_Ex_rep_c69627_68580121 6A 108.07-109.99 1.58E-04-
8.46E-04
2.78-
6.47
气孔平均面积/气孔所占比ASA/SPP 正常灌溉/干旱胁迫NI/DS wsnp_Ra_c16745_25482384 6A 115.02 2.46E-04-
9.49E-04
3.70-
6.20
气孔密度/气孔所占比SD/SPP 正常灌溉/干旱胁迫NI/DS RAC875_c18340_661 6D 51.95 9.55E-04-
9.72E-04
4.78-
6.55

Fig. 3

Haplotype analysis of wsnp_Ex_rep_c69627_68580121 A: LD regions associated with wsnp_Ex_rep_c69627_68580121 marker on chromosome 6A; B: haplotype distribution frequency of wsnp_Ex_rep_c69627_68580121 in different wheat regions. NWWR: the northern winter wheat region; FV: foreign varieties (lines); YHFWWR: Yellow and Huai winter wheat region; SWWR: southwestern winter wheat region; MLYWWR: middle and lower Yangtze River winter wheat region."

Table 6

Statistical analysis of haplotype results"

性状
Trait
标记
Marker
单倍型Haplotype 等位基因Allele 频率
Frequency (%)
ASA平均值
ASA mean
SPP平均值
SPP mean
(%)
NI (μm2) DS (μm2)
气孔平均面积/
气孔所占比ASA/SPP
wsnp_Ex_rep_c69627_68580121 Hap1 TT 81.20 2193.68 a 2259.09 a 14.37 a
Hap2 CC 18.80 2419.18 b 2426.91 b 15.84 b

Table 7

Identification and information of candidate genes"

染色体
Chr.
位点
Marker name
性状
Trait
物理位置
Position (Mb)
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
1A Kukri_c45512_193 ASA/SPP 533.90 TraesCS7B01G298100 肉桂酰辅酶A还原酶4
Cinnamoyl-CoA reductase 4
1B Kukri_c13458_226 ASA/SPP 452.28 TraesCS1B01G261200 GDSL 酯酶/脂肪酶
GDSL esterase/lipase
3A D_contig72157_427 SD 46.17 TraesCS3A01G074400 细胞色素P450家族蛋白, 表达
Cytochrome P450 family protein, expressed
4A BS00064423_51 SD 627.82 TraesCS4A01G351400 F-box蛋白家族F-box family protein
5A tplb0043g09_926 SD/SPP 395.06 TraesCS5A01G192600 F-box蛋白家族F-box family protein
6A Ex_c69429_328 SD 2.40 TraesCS6A01G007300 类Myb家族转录因子蛋白
Myb family transcription factor-like protein
6A wsnp_Ex_rep_c69627_68580121 ASA/SPP 108.07-109.99 TraesCS6A01G189300LC 60S核糖体蛋白L28
60S ribosomal protein L28
6A wsnp_Ra_c16745_25482384 ASA/SPP 112.58-115.02 TraesCS6A01G193800LC ABC转运蛋白ATP结合蛋白
ABC transporter ATP-binding protein
6D RAC875_c18340_661 SD/SPP 51.95 TraesCS5A01G038300 生长素响应因子Auxin response factor
[1] Colin C M, Stephen S J. Breeding perennial grain crops based on wheat. Crop Sci, 2017, 57: 1172-1188.
[2] Tahira T, Muhammad F, Riaz A, Ali Z, Abdul W, Muhammad S. Terminal drought and seed priming improves drought tolerance in wheat. Physiol Mol Biol Plants, 2018, 24: 845-856.
[3] Stuart C, Julie E. Gray. Influence of environmental factors on stomatal development. New Phytol, 2008, 178: 9-23
doi: 10.1111/j.1469-8137.2007.02351.x pmid: 18266617
[4] 王声锋, 段爱旺, 张展羽, 徐建新. 基于随机降水的冬小麦灌溉制度制定. 农业工程学报, 2010, 26(12): 47-52.
Wang S F, Duan A W, Zhang Z Y, Xu J X. Winter wheat irrigation schedule on stochastic precipitation. Trans CSAE, 2010, 26(12): 47-52 (in Chinese with English abstract).
[5] 刘梦龙, 魏健, 任姿蓉, 张亚黎, 王愔. 气孔研究进展: 从保卫细胞到光合作用. 生命科学, 2024, 36: 1289-1304.
Liu M L, Wei J, Ren Z R, Zhang Y L, Wang Y. Research progress of stomata: from guard cells to photosynthesis. Chin Bull Life Sci, 2024, 36: 1289-1304 (in Chinese with English abstract).
[6] 方静, 史功赋, 魏淑丽, 程玉臣, 张向前, 王建国, 安玉, 赵小庆, 路战远. 干旱胁迫对春小麦旗叶生理特征及其根系抗旱基因表达特征的影响. 干旱地区农业研究, 2022, 40(3): 46-55.
Fang J, Shi G F, Wei S L, Cheng Y C, Zhang X Q, Wang J G, An Y, Zhao X Q, Lu Z Y. Effects of drought stress on physiological characteristics of flag leaves and expression characteristics of drought-resistant genes in roots of spring wheat. Agric Res Arid Areas, 2022, 40(3): 46-55 (in Chinese with English abstract).
[7] 陈倩倩, 范阳阳, 郝影宾, 刘西平. 不同土壤水分含量对玉米气孔发育过程和蒸腾耗水量的影响. 干旱地区农业研究, 2011, 29(3): 75-79.
Chen Q Q, Fan Y Y, Hao Y B, Liu X P. Effects of different soil water content on stomata development and water consumption of maize. Agric Res Arid Areas, 2011, 29(3): 75-79 (in Chinese with English abstract).
[8] 燕雯, 金秀良, 李龙, 徐子涵, 苏悦, 张跃强, 景蕊莲, 毛新国, 孙黛珍. 基于无人机多源影像数据的灌浆期人工合成小麦抗旱性评价. 中国农业科学, 2024, 57: 1674-1686.
doi: 10.3864/j.issn.0578-1752.2024.09.005
Yan W, Jin X L, Li L, Xu Z H, Su Y, Zhang Y Q, Jing R L, Mao X G, Sun D Z. Drought resistance evaluation of synthetic wheat at grain filling using UAV-Based Multi-Source imagery data. Sci Agric Sin, 2024, 57: 1674-1686 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.09.005
[9] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007, 40: 2452-2459.
Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Gray relational grade analysis of agronomical and Physi-biochemical traits related to drought tolerance in wheat. Sci Agric Sin, 2007, 40: 2452-2459 (in Chinese with English abstract).
[10] Shahinia F, Le Roy J, Laborde B, Sznajder B, Kalambettu P, Mahjourimajd S, Tilbroook J, Fleury D. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments. BMC plant Biol, 2016, 16: 150-163.
doi: 10.1186/s12870-016-0838-9 pmid: 27378125
[11] Ahmed H G M, Iqbal M N, Iqbal M A, Zeng Y W, Ullah A, Iqbal M, Raza H, Yar M M, Sarwar N, Imran M, et al. Genome-wide association mapping for stomata and yield indices in bread wheat under water limited conditions. Agronomy, 2021, 11: 1646.
[12] Yates S A, Bruun A, Hodel M, Grieder C, Hund A, Walter A, Studer B. Genetic determination of stomatal patterning in winter wheat (Triticum aestivum L.). bioRxiv, 2018: 490029.
[13] Li S M, Yu S Z, Zhang Y F, Zhu D H, Li F F, Chen B, Mei F M, Du L Y, Ding L, Chen L, et al. Genome-wide association study revealed TaHXK3-2A as a candidate gene controlling stomatal index in wheat seedlings. Plant Cell Environ, 2022, 45: 2306-2323
[14] 丁浦洋, 周界光, 赵聪豪, 唐华苹, 牟杨, 唐力为, 邓梅, 魏育明, 兰秀锦, 马建. 小麦小穗数调控基因WAPO1的单倍型, 遗传效应, 地理分布及育种利用分析. 作物学报, 2022, 48: 2196-2209.
doi: 10.3724/SP.J.1006.2022.11078
Ding P Y, Zhou J G, Zhao C H, Tang H P, Mou Y, Tang L W, Deng M, Wei Y M, Lan X J, Ma J, Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat. Acta Agron Sin, 2022, 48: 2196-2209 (in Chinese with English abstract).
[15] 魏迪, 常平, 刘佳熠, 杨阳, 张璇, 陈亮, 胡银岗. 小麦EPF/EPFL基因家族的全基因组鉴定及TaEPF1-2B与气孔性状的关系分析. 麦类作物学报, 2021, 41: 1317-1329.
Wei D, Chang P, Liu J Y, Yang Y, Zhang X, Chen L, Hu Y G. Genome-Wide identification of EPF/EPFL gene family in wheat (Triticum aestivum) and analysis of TaEPF1-2B associated with stomatal traits. J Triticeae Crops, 2021, 41: 1317-1329 (in Chinese with English abstract).
[16] Nassuth N, Rahman M.A, Nguyen T, Ebadi A. Lee C. Leaves of more cold hardy grapes have a higher density of small, sunken stomata. Vitis, 2021, 60: 63-67.
[17] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47: 438-450.
doi: 10.3724/SP.J.1006.2021.04063
Han B, Wang X W, Li B Q, Yu Y, Tian Q, Yang X Y. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.). Acta Agron Sin, 2021, 47: 438-450 (in Chinese with English abstract).
[18] Zhang J, Nilda R.B, Ma K, Zhou Y J, Geng R M, Yu L Q. Genetic diversity and relationship of weedy rice in Taizhou city, Jiangsu province, China. Rice Sci, 2008, 15: 295-302.
[19] 黄婧, 张敏. 基于SNP分子标记的乌饭树种质遗传多样性研究. 植物遗传资源学报, 2025, 26: 530-538.
Huang J, Zhang M. Genetic diversity analysis of Vaccinium bracteatum germplasm based on SNP markers. J Plant Genet Resour, 2025, 26: 530-538 (in Chinese with English abstract).
[20] 栾海业, 孟炜, 张英虎, 李钰, 朱琳洁, 王裕, 刘雨倩, 徐肖, 刘方方, 沈会权. 大麦耐盐相关性状的全基因组关联分析. 麦类作物学报, 2024, 44: 729-734.
Luan H Y, Meng W, Zhang Y H, Li Y, Zhu L J, Wang Y, Liu Y Q, Xu X, Liu F F, Shen H Q. Genome-Wide association analysis of traits related to salt tolerance in barley. J Triticeae Crops, 2024, 44: 729-734 (in Chinese with English abstract).
[21] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, Mcmullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[22] Cattivelli L, Rizza F, Badeck F W, Mazzucotelli E, Mastrangelo A M, Francia E, Mare C, Tondelli A, Stanca A M. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res, 2008, 105: 1-14.
[23] 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30: 886-895.
Zhao G C. Study on Chinese wheat planting regionalization (I). J Triticeae Crops, 2010, 30: 886-895 (in Chinese with English abstract).
[24] 陈晨, 张永成. 马铃薯不同品种间气孔密度及叶绿素含量的差异性研究. 中国农学通报, 2013, 29(27): 83-87.
Chen C, Zhang Y C. Research on the differences in stomatal density and chlorophyll content among different potato varieties. Chin Agric Sci Bull, 2013, 29(27): 83-87 (in Chinese with English abstract).
[25] 李方杰, 常志杰, 史大坤, 卫晓轶, 魏锋, 洪德峰, 马俊峰. 郑秋道. 不同基因型玉米间作对气孔特征和产量的影响. 河南农业科学, 2024, 53(8): 21-29.
Li F J, Chang Z J, Shi D K, Wei X Y, Wei F, Hong D F, Ma J F, Zheng Q D. Effects of intercropping of different genotypes of maize on stomatal characteristics and yield. J Henan Agric Sci, 2024, 53(8): 21-29 (in Chinese with English abstract).
[26] Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inzé D. F-box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiol, 2017, 58: 962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173
[27] 刘德政. 调控小麦叶片气孔性状关键基因及其优异位点的挖掘. 西北农林科技大学硕士学位论文, 陕西杨凌, 2023.
Liu D Z. Discovery of Key Genes Regulating Wheat Leaf Stomatal Traits and Their Superior Sites. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[28] 王睿, 任毅, 程宇坤, 王伟, 张志辉, 耿洪伟. 小麦旗叶形态相关性状全基因组关联分析. 作物学报, 2023, 49: 2886-2901.
doi: 10.3724/SP.J.1006.2023.21085
Wang R, Ren Y, Cheng Y K, Wang W, Zhang Z H, Geng H W. Genome-wide association analysis of morphological traits of flag leaf in wheat. Acta Agron Sin, 2023, 49: 2886-2901 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.21085
[29] 陈玲玲, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 大豆叶柄夹角相关基因GmILPA1单倍型分析. 植物遗传资源学报, 2021, 22: 1698-1707.
doi: 10.13430/j.cnki.jpgr. 20210419003
Chen L L, Liu T X, Gu Y Z, Song J, Wang J, Qiu L J. Haplotype analysis of petiole angle-related gene GmILPA1 in soybean. J Plant Genet Resour, 2021, 22: 1698-1707 (in Chinese with English abstract).
[30] 刘德政, 卢山, 高珅奥, 王脉, 乔朋放, 董清峰, 任昊, 陈亮, 胡银岗. 大田和旱棚环境下小麦旗叶气孔性状变异及其与光合参数的关系. 麦类作物学报, 2024, 44: 360-369.
Liu D Z, Lu S, Gao S A, Wang M, Qiao P F, Dong Q F, Ren H, Chen L, Hu Y G. Variations of flag leaf and stomatal traits of wheat in field and drought shed environment. J Triticeae Crops, 2024, 44: 360-369 (in Chinese with English abstract).
[31] Zhang Y, Xu W, Li Z, Deng X W, Wu W H, XueY B. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiol, 2008, 148, 751-763.
[32] Kim S, Yamaoka Y, Ono H, Kim H, Shin D, Meashima M, Martinoia E, Cahoon E B, Nishida I, Lee Y. At ABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci USA, 2013, 110: 773-778.
[33] Park J J, Jin P, Yoon J, Yang J I, Jeong H J, Ranathunge K, Schreiber L, Franke R, Lee I J, An G. Mutation in Wilted Dwarf and Lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol, 2010, 74: 91-103.
[34] 陈默, 陈璐, 李双江, 谢海弘, 宋勇. 干旱胁迫对不同木薯苗期生理特性及气孔形态的影响. 四川农业大学学报, 2024, 42: 1049-1056.
Chen M, Chen L, Li S J, Xie H H, Song Y. Effects of drought stress on physiological characteristics and stomatal morphology of different cassava seedlings. J Sichuan Agric Univ, 2024, 42: 1049-1056 (in Chinese with English abstract).
[35] 韩慧, 张秀海, 郭建波, 张来喜, 杨风萍, 董然. DELLA蛋白在植物中的功能. 分子植物育种, 网络首发[2024-12-16], https://link.cnki.net/urlid/46.1068.S.20241216.1105.002.
Han H, Zhang X M, Guo J B, Zhang L X, Yang F P, Dong R. The function of DELLA protein in plants. Mol Plant Breed, Published online [2024-12-16], https://link.cnki.net/urlid/46.1068.S.20241216.1105.002. (in Chinese with English abstract).
[36] 春宇, 李向颖, 元元, 萨日娜. 盐碱胁迫对藜麦生理生化及代谢水平的影响综述. 农业科学研究, 2024, 45(4): 67-77.
Chun Y, Li X Y, Yuan Y, Sa R N. A review on the impact of saline-alkali stress on the physiological, biochemical, and metabolic levels of quinoa. J Agric Res, 2024, 45(4): 67-77 (in Chinese with English abstract).
[1] LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398.
[2] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[3] YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484.
[4] KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466.
[5] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[6] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[7] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[8] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[9] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[10] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[11] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[12] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[13] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[14] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[15] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .