Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2547-2556.doi: 10.3724/SP.J.1006.2025.42051

• RESEARCH NOTES • Previous Articles    

Development of functional markers of rice stripe disease resistance gene STV11 based on HRM technique

WANG Chan1,2(), WU Ying-Ying1,2, LI Wen-Qi2, LI Xia2, WANG Fang-Quan2, ZHOU Tong3, YANG Jie1,2,*()   

  1. 1Jiangsu University, Zhenjiang 212013, Jiangsu, China
    2Institute of Grain Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Germplasm lnnovation in Downstrem of Huaihe River (Nanjing), Nanjing 210014, Jiangsu, China
    3Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-11-27 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-13
  • Contact: *E-mail: yangjie168@aliyun.com E-mail:cw00113@163.com;yangjie168@aliyun.com
  • Supported by:
    Zhongshan Biological Breeding Laboratory Project(BM2022008-03)

Abstract:

Rice stripe disease, transmitted by the brown planthopper, poses a major threat to rice (Oryza sativa L.) production, particularly affecting japonica rice (Oryza sativa subsp. japonica). The causal agent is the rice stripe virus (RSV), which causes significant yield losses. To accelerate the breeding of rice varieties resistant to rice stripe disease, this study aimed to develop functional markers for the rapid and accurate identification of RSV resistance genes, thereby improving the efficiency of rice germplasm enhancement. STV11, a resistance gene identified in the indica variety Kasalath, was targeted. Based on a six-base deletion polymorphism in the Kasalath-type resistance allele STV11KAS (LOC_Os11g30910), sequence data from NCBI were analyzed. A PCR-based functional molecular marker, stvHRM-3, was designed according to nucleotide differences at positions 773-779 between resistant and susceptible varieties. PCR amplification and sequencing of the target fragments were conducted to validate the marker’s specificity. Through HRM-PCR detection and sequencing analysis, stvHRM-3 was confirmed as a functional marker for the STV11 gene. Using this marker, the STV11 genotypes of 520 japonica rice accessions—including materials from the Jiangsu Provincial Late Japonica Rice Regional Trials, late-maturing medium japonica preliminary tests, breeding intermediates, and selected varieties—were analyzed. Results showed that 217 accessions carried the resistance allele, 294 carried the susceptibility allele, and nine exhibited a heterozygous genotype. Accessions identified as resistant through marker analysis consistently exhibited high or moderate levels of resistance. The stvHRM-3 marker, developed using HRM-PCR technology, enables rapid, high-throughput genotyping of STV11 alleles and provides an effective tool for the early screening of RSV resistance. This marker holds great potential for application in marker-assisted selection and breeding of stripe virus-resistant rice varieties.

Key words: rice, rice stripe disease, STV11, functional marker, HRM-PCR technology

Table 1

Functional markers and sequencing primers designed based on sequence differences"

引物名称
Primer name
引物序列
Primer sequence
(5′-3′)
片段大小
Expected size
(bp)
stv477-F GAGTCCACCTTCGCCATCTC 477
stv477-R CAGCATCTCCTCGTACCGGA
stvHRM-1-F GAAGGGTGTCACAACGACCA 75
stvHRM-1-R AACACCTGCTCGATCGATGG
stvHRM-2-F AGCAACATGGTGAAGGGTGT 90
stvHRM-2-R GTCGAACACCTGCTCGATCG
stvHRM-3-F TGTCACAACGACCACGGAC 84
stvHRM-3-R TCGCAGAACAGGTCGAACAC
stvHRM-4-F GAAGGGTGTCACAACGACCA 91
stvHRM-4-R GTCGCAGAACAGGTCGAACA
stvHRM-5-F AGCAACATGGTGAAGGGTGT 91
stvHRM-5-R GGTCGAACACCTGCTCGATC

Fig. 1

Sequence alignment of the functional locus of the STV11 gene in resistant rice varieties The picture shows the sequence comparison results of Huaidao 5, Nanjing 45, Nanjing 46, Nanjing 5055, Nanjing 9108, Nongxiang 39, Yuehesimiao, and Zhendao 88. The gray frame shows the difference of resistant varieties."

Fig. 2

Polymorphism analysis of the STV11 gene using high-resolution melting (HRM) functional markers The horizontal axis denotes temperature, while the vertical axis corresponds to the fluorescence emission intensity measured between 465 nm and 510 nm. A: test result of stvHRM-1; B: result of stvHRM-2 detection; C: test result of stvHRM-4 detection; D: test result of stvHRM-5; E: result of stvHRM-3 detection. Blue shows the melting curves of Zhendao 88, Nanjing 46, Nanjing 5055, Nanjing 9108, Nongxiang 39 and Yuehesimiao. Red shows the melting curves of Huaidao 5 and Nanjing 45. Gray shows the melting curve of mixed DNA of resistant varieties. STV11-R represents the disease-resistant genotype, STV11-S represents the disease-susceptible genotype, and Heterozygote represents the heterozygous type."

Fig. 3

Identification of STV11 genotype of intermediate material for rice breeding Abbreviations are the same as those given in Fig. 2. Blue represents the melting curves of Linghe 9178, Nongxiang 21, Habo 3003, Fan 20, R6547, Huazhan, Baohuang 33145, Xingdao 99, and Suxiu 867. Red represents the melting curves of Xudao 268, Jinwujing 3087, Huajing 0061, Ningjing 2243, Chunjing 747, Tianfengjing 98, Xudao 3, and Huazhejing 20124. Green represents the melting curves of Jindanjing 125, Huaidao 5/Runyangdao 17001 (Pigm) (F7), Wuyunjing 39//Suifan-20 ([53045/07GY31(pigm)BC1F2] /Huaidao 5 (fast grain-filling) (F5)) (BC1F1) (F5), Zijingnuo 1 Xiang/A120-41 (F8), Baofeng 246, and Jinjing 59/ ([9108/NJ45HR (F2)]/71029 (F7)) (F5)."

Fig. 4

Sequencing peaks of STV11 gene in rice materials identified by stvHRM-3 marker Abbreviations are the same as those given in Fig. 2. A to C show the sequencing chromatograms of the STV11 gene from single plants of Linghe 9178, Huajing 0061, and Huaidao 5/Runyangdao 17001 (Pigm) (F7), respectively. The red box indicates nucleotides 773-779 of the STV11 gene."

Table 2

Detection and phenotype of resistance genotypes to stripe leaf blight in Jiangsu province"

名称
Name
高分辨率熔解曲线
HRM
抗性评价
Resistance evaluation
抗性等级
Resistance class
南粳13092 Nanjing 13092 STV11-S MS 5
镇稻6243 Zhendao 6243 STV11-S R 3
华粳2050 Huajing 2050 STV11-R HR 1
常粳23-1 Changjing 23-1 STV11-S R 3
苏2869 Su 2869 STV11-R HR 1
金单粳119 Jindanjing 119 STV11-S R 3
宁B9036 Ning B9036 STV11-R HR 1
盐稻777 Yandao 777 STV11-S R 3
农香粳1265 Nongxiangjing 1265 STV11-R R 3
HM2308 STV11-S MS 5
苏垦24038 Suken 24038 STV11-R R 3
星稻99 Xingdao 99 STV11-R HR 1
苏2118 Su 2118 STV11-S R 3
通粳233 Tongjing 233 STV11-R R 3
武运粳23号 Wuyunjing 23 STV11-S HR 1
扬粳糯369 Yangjingnuo 369 STV11-S R 3
晚粳糯9号 Wanjingnuo 9 STV11-S HR 1
镇糯6279 Zhennuo 6279 STV11-S HR 1
苏糯2108 Sunuo 2108 STV11-R HR 1
盐香糯279 Yanxiangnuo 279 STV11-S MS 5
宁糯20910 Ningnuo 20910 STV11-R R 3
明糯31029 Mingnuo 31029 STV11-S MS 5
春糯708 Chunnuo 708 STV11-S R 3
武运粳23号 Wuyunjing 23 STV11-S HR 1

Table 3

Comparison of resistance identification results for rice stripe virus using the molecular markers stvHRM-3 and ST10"

ST10标记检测
Detection of ST10
stvHRM-3标记检测Detection of stvHRM-3
抗病基因型
Disease resistance genotype
感病基因型
Susceptible genotype
杂合型
Heterozygous
总计
Total
抗病基因型Disease resistance genotype 183 36 8 227
感病基因型Susceptible genotype 34 258 1 293
杂合基因型Heterozygous 0 0 0 0
总计Total 217 294 9 520

Fig. 5

Detection of the molecular marker ST10 in late-ripening medium japonica identification materials The presence of a band indicates the resistant genotype, while its absence denotes the susceptible genotype. Numbers in this figure correspond to the materials was listed in Table S1."

Table S1

Hybrid combination of partial late-maturing medium japonica evaluation lines in the evaluation"

品系
Line
杂交组合
Hybrid combination
品系
Line
杂交组合
Hybrid combination
43067 皖粳糯1号/武T26 (糯) /红糯(太湖所选) (F6)
Wanjingnuo 1/Wu T26 (nuo) / Hongnuo (selected from Taihu) (F6)
43184 93093/13076 (F7)
43068 83019/86110 (F7) 43185 93093/13082 (F7)
43069 连粳147729/红糯(太湖所选) (F6)
Lianjing 147729/Hongnuo (selected from Taihu) (F6)
43186 紫金糯1号香// [淮5/金粳818 (BC2F1)] (F8)
Zijinnuo 1 Xiang/ [Huai 5/ Jinjing 818 (BC2F1)] (F8)
43070 镇糯19号/武T26 (糯) /红糯(太湖所选) (F6)
Zhennuo 19/Wu T26 (nuo) / Hongnuo (selected from Taihu) (F6)
43187 93093/13076 (BC1F6)
43071 镇糯19号/武T26 (糯) /红糯(太湖所选) (F6)
Zhennuo 19/Wu T26 (nuo) / Hongnuo (selected from Taihu) (F6)
43188 93093/13076 (BC1F6)
43072 兴化紫稻/泗阳紫稻 (F6)
Xinghuazidao/Siyangzidao (F6)
43189 紫金糯1号香/A120-41 (F9)
Zijinnuo 1 Xiang/A120-41 (F9)
43073 17111/63131//73220 (F17) 43190 紫金糯1号香/A120-41 (F9)
Zijinnuo 1 Xiang/A120-41 (F9)
43074 常农粳8号/泗稻15 (F7)
ChangnongJing 8/Sidao 15 (F7)
43191 紫金糯1号香/A120-41 (F8)
Zijinnuo 1 Xiang/A120-41 (F8)
43075 75102/ 71091 (F7) 43192 紫金糯1号香/A120-41 (F8)
Zijinnuo 1 Xiang/A120-41 (F8)
43076 [新软米/南粳46 (F9)] /07GY31 (pigm) (F7)
[Xinruanmi/Nanjing 46 (F9)] /07GY31 (pigm) (F7)
43193 紫金糯1号香/A120-41 (F8)
Zijinnuo 1 Xiang/A120-41 (F8)
43077 中168/22116//31123 (F11)
Zhong 168/22116//31123 (F11)
43194 紫金糯1号香/A120-41 (F8)
Zijinnuo 1 Xiang/A120-41 (F8)
43078 NJ49/41139 (F10) 43195 紫金糯1号香/A120-41 (F8)
Zijinnuo 1 Xiang/A120-41 (F8)
43079 62055/82043 (F6) 43196 93093/13076 (F7)
43080 淮稻5号
Huaidao 5
43197 通系949/19HNKG480 (F8)
Tongxi 949/19HNKG480 (F8)
43081 武运粳27/金粳818 (BC4F6)
Wuyunjing 27/Jinjing 818 (BC4F6)
43198 通系949/19HNKG480 (F8)
Tongxi 949/19HNKG480 (F8)
43082 武运粳27/金粳818 (BC4F6)
Wuyunjing 27/Jinjing 818 (BC4F6)
43199 93093/13076 (BC1F6)
43083 [武科粳210/润稻118] / [武科粳210/ WM1606] (F5)
[Wukejing 210/Rundao 118] / [Wukejing 210/ WM1606] (F5)
43200 93093/08102 (BC1F6)
43084 宁9108/15迟中预63 (F9)
Ning 9108/15 Chizhongyu 63 (F9)
43201 93093/08102 (BC3F5)
43085 武运粳39//穗繁-20 ([53045/07GY31 (pigm) BC1F2] /淮稻5号(灌浆快) (F5)) (BC1F1) (F5)
[Wuyunjing 39//Suifan-20 ([53045/07GY31 (pigm) BC1F2] / Huaidao 5 (Rapid grain filling) (F5))] (BC1F1) (F5)
43202 93093/08102 (BC3F5)
43086 武运粳39//穗繁-20 ([53045/07GY31(pigm) BC1F2]/淮稻5号(灌浆快)(F5)) (BC1F1) (F5)
[Wuyunjing 39// Sui Fan-20 ([53045/ 07GY31 (pigm) BC1F1]/ Huaidao 5 (Rapid grain filling) (F5))] (BC1F1) (F5)
43203 93093/08102 (BC3F5)
43087 [53045/ 07GY31(Pigm) (BC1F9)] / [金粳818/连粳7号(F6)] (F5)
[53045/ 07GY31(Pigm) (BC1F9)] / [Jinjing 818/Lianjing 7(F6)] (F5)
43204 93093/08102 (BC1F6)
43088 淮稻5号/润扬稻17001 (Pigm) (F7)
Huaidao 5/Runyangdao 17001 (Pigm) (F7)
43205 93093/08102 (BC1F6)
43089 淮稻5号/润扬稻17001 (Pigm) (F7)
Huaidao 5/Runyangdao 17001 (Pigm) (F7)
43206 93093/08102 (BC3F5)
43090 大穗香/金香玉1号(F7)
Dasuixiang/Jinxiangyu 1 (F7)
43207 93093/08102 (BC3F5)

Table 4

HRM-PCR analysis of STV11 genotypes of 520 rice accessions"

材料
Material
总数
Total
抗病基因型STV11-R 感病基因型STV11-S 杂合型Heterozygote
江苏省迟熟中粳预试
Jiangsu provincial preliminary trial for late-maturing medium japonica rice
97 45 50 2
中熟中粳鉴定Mid-maturing medium japonica evaluation 51 25 25 1
迟熟中粳鉴定Late-maturing medium japonica evaluation 262 90 166 6
早熟晚粳鉴定Early-maturing late japonica evaluation 38 29 9 0
江苏省早熟晚粳组区试
Jiangsu provincial regional trials for early-maturing late japonica rice group
15 7 8 0
江苏省早熟晚粳早熟组区试
Jiangsu provincial regional trials for early-maturing subgroup of early-maturing late japonica rice
9 2 7 0
其他材料Other accessions 48 19 29 0
共计Total 520 217 294 9
[1] Lu G, Yao M, Zhou Y J, Tao X R. Purification of rice stripe virus. Bio Protoc, 2020, 10: e3565.
[2] Cho W K, Lian S, Kim S M, Park S H, Kim K H. Current insights into research on rice stripe virus. Plant Pathol J, 2013, 29: 223-233.
doi: 10.5423/PPJ.RW.10.2012.0158 pmid: 25288949
[3] Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet, 2018, 19: 21-33.
doi: 10.1038/nrg.2017.82 pmid: 29109524
[4] Utomo H S, Linscombe S D. Current patents and future development underlying marker-assisted breeding in major grain crops. Recent Pat DNA Gene Seq, 2009, 3: 53-62.
pmid: 19149739
[5] Liu X, Du Y R, Li X H, Li X L, Yang W Q, Wang Y. Breeding of a target genotype variety based on identified chalkiness marker-QTL associations in rice (Oryza sativa L.). Genet Mol Res, 2015, 14: 12894-12902.
doi: 10.4238/2015.October.21.10 pmid: 26505442
[6] Xu Y, Zhang H Y, Kang G B, Wang Y J, Chen H. Studies of molecular marker-assisted-selection for resistance to Fusarium wilt in watermelon (Citrullus lanatus) breeding. Acta Genet Sin, 2000, 27: 151-157.
[7] Hayashi K, Kawahara Y, Maeda H, Hayano-Saito Y. Comparative analyses of Stvb-allelic genes reveal japonica specificity of rice stripe resistance in Oryza sativa. Breed Sci, 2022, 72: 333-342.
[8] Wang Q, Liu Y Q, He J, Zheng X M, Hu J L, Liu Y L, Dai H M, Zhang Y X, Wang B X, Wu W X, et al. STV11 encodes a sulphotransferase and confers durable resistance to rice stripe virus. Nat Commun, 2014, 5: 4768.
doi: 10.1038/ncomms5768 pmid: 25203424
[9] Hayano-Saito Y, Saito K, Fujii K, Touyama T, Tsuji T, Sugiura N, Izawa T, Iwasaki M. SCAR marker for selection of the rice stripe resistance gene Stvb-i. Breed Res, 2000, 2: 67-72.
[10] 陈峰, 周继华, 张士永, 严长杰, 朱文银, 孙亚伟, 袁守江, 杨连群. 水稻抗条纹叶枯病基因Stv-bi的分子标记辅助选择. 作物学报, 2009, 35: 597-601.
Chen F, Zhou J H, Zhang S Y, Yan C J, Zhu W Y, Sun Y W, Yuan S J, Yang L Q. Marker-assisted selection for Stv-bi gene controlling resistance to rice stripe disease. Acta Agron Sin, 2009, 35: 597-601 (in Chinese with English abstract).
[11] 毛艇, 李旭, 张战, 付立东, 李振宇. 抗条纹叶枯病基因STV11的功能性分子标记建立及粳型抗源筛选. 中国水稻科学, 2016, 30: 661-667.
doi: 10.16819/j.1001-7216.2016.6058
Mao T, Li X, Zhang Z, Fu L D, Li Z Y. Development of functional marker for rice stripe virus resistant gene STV11 and resistant germplasm selection in japonica rice. Chin J Rice Sci, 2016, 30: 661-667 (in Chinese with English abstract).
[12] Kiani S J, Donyavi T, Bokharaei-Salim F. Detection of CCR5 delta-32 mutation using high-resolution melting curve analysis: challenges and facts. Curr HIV Res, 2024, 22: 368-373.
doi: 10.2174/011570162X326491240906064322 pmid: 39279712
[13] Muneeswaran K, Branavan U, de Silva V A, Dayabandara M, Hanwella R, Chandrasekharan N V. Genotyping SNPs and Indels: a method to improve the scope and sensitivity of High-Resolution melt (HRM) analysis based applications. Clin Chim Acta, 2024, 562: 119897.
[14] Jeong J, Yang Y S, Song M S, Won H Y, Han A T, Kim S. High-Resolution Melting (HRM) analysis of DNA methylation using semiconductor chip-based digital PCR. Genes Genomics, 2024, 46: 909-915.
[15] Hou Y L, You C G. High-throughput and rapid melting curve analysis. Clin Lab, 2018, 64: 1113-1119.
[16] Vologodskii A, Frank-Kamenetskii M D. DNA melting and energetics of the double helix. Phys Life Rev, 2018, 25: 1-21.
doi: S1571-0645(17)30159-8 pmid: 29170011
[17] Wittwer C T, Hemmert A C, Kent J O, Rejali N A. DNA melting analysis. Mol Aspects Med, 2024, 97: 101268.
[18] Waters D L E, Shapter F M. The polymerase chain reaction (PCR): general methods. Methods Mol Biol, 2014, 1099: 65-75.
doi: 10.1007/978-1-62703-715-0_7 pmid: 24243196
[19] Lorenz T C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp, 2012: e3998.
[20] Mafi S, Dehghani M, Khalvati B, Abidi H, Ghorbani M, Jalali P, Whichelo R, Salehi Z, Markowska A, Reyes A, et al. Targeting PERK and GRP 78 in colorectal cancer: genetic insights and novel therapeutic approaches. Eur J Pharmacol, 2024, 982: 176899.
[21] Pryor R J, Wittwer C T. Real-time polymerase chain reaction and melting curve analysis. Methods Mol Biol, 2006, 336: 19-32.
pmid: 16916250
[22] 房文文, 王海凤, 郭涛, 薛芳, 姜艳芳, 张焕霞, 张士永. 基于PCR-HRM的水稻氮高效基因NRT1.1B功能标记开发及应用. 山东农业科学, 2023, 55(8): 21-26.
Fang W W, Wang H F, Guo T, Xue F, Jiang Y F, Zhang H X, Zhang S Y. Development and application of functional marker of rice nitrogen-efficient gene NRT1.1B based on PCR-HRM. Shandong Agric Sci, 2023, 55(8): 21-26 (in Chinese with English abstract).
[23] 兰莹, 杜琳琳, 林峰, 李晨羊, 周益军, 宋锦花, 许明, 周彤. 2015-2021年江苏省粳稻新品种(系)对水稻条纹叶枯病的抗性评价. 江苏农业科学, 2023, 51(24): 100-104.
Lan Y, Du L L, Lin F, Li C Y, Zhou Y J, Song J H, Xu M, Zhou T. Evaluation of resistance of new japonica rice varieties (lines) to rice stripe leaf blight in Jiangsu province from 2015 to 2021. Jiangsu Agric Sci, 2023, 51(24): 100-104 (in Chinese).
[24] 王才林, 张亚东, 朱镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌. 优良食味粳稻新品种南粳9108的选育与利用. 江苏农业科学, 2013, 41(9): 86-88.
Wang C L, Zhang Y D, Zhu Z, Yao S, Zhao Q Y, Chen T, Zhou L H, Zhao L. Breeding and utilization of new japonica rice variety Nanjing 9108 with good food taste. Jiangsu Agric Sci, 2013, 41(9): 86-88 (in Chinese).
[25] 王蓉. 南粳5055品种特性及高产栽培技术. 农业工程技术, 2020, 40(32): 61-62.
Wang R. Variety characteristics and high-yield cultivation techniques of Nanjing 5055. Agric Eng Technol, 2020, 40(32): 61-62 (in Chinese).
[26] 杨艳, 严贞, 杨居银. 淮稻5号品种特性及绿色栽培技术. 农业开发与装备, 2021, (1): 205-206.
Yang Y, Yan Z, Yang J Y. Variety characteristics and green cultivation techniques of Huaidao 5. Agric Dev Equip, 2021, (1): 205-206 (in Chinese).
[27] 赵凌, 朱镇, 陈涛, 赵庆勇, 赵春芳, 张亚东, 王才林. 水稻优良品种南粳46及其衍生品种特性分析. 植物遗传资源学报, 2023, 24: 648-660.
doi: 10.13430/j.cnki.jpgr.20221110001
Zhao L, Zhu Z, Chen T, Zhao Q Y, Zhao C F, Zhang Y D, Wang C L. Analysis on characteristics of rice variety Nanjing 46 and its derived varieties. J Plant Genet Resour, 2023, 24: 648-660 (in Chinese with English abstract).
[28] 姜守全, 张世辉, 方杰, 李智谋, 郭君, 管锋, 姚仁祥, 伍振平. 优质晚稻农香39的特征特性及富硒高产栽培技术. 农业科技通讯, 2022, (12): 200-202.
Jiang S Q, Zhang S H, Fang J, Li Z M, Guo J, Guan F, Yao R X, Wu Z P. Characteristics of high-quality late rice Nongxiang 39 and its Se-enriched and high-yield cultivation techniques. Bull Agric Sci Technol, 2022, (12): 200-202 (in Chinese).
[29] 沈宏扬, 游贝, 何瑜, 王倩. 高产稳产优质杂交稻新组合两优粤禾丝苗. 中国种业, 2024, (9): 149-150.
Shen H Y, You B, He Y, Wang Q. Liangyouyuehe silk seedling, a new hybrid rice combination with high and stable yield and good quality. China Seed Ind, 2024, (9): 149-150 (in Chinese).
[30] Deng R L, Tao M, Xing H, Yang X L, Liu C, Liao K F, Qi L. Automatic diagnosis of rice diseases using deep learning. Front Plant Sci, 2021, 12: 701038.
[1] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[2] GUO Bao-Wei, WANG Wang, WANG Kai, WANG Yan, ZENG Xin, JING Xiu, WANG Jing, NI Xin-Hua, XU Ke, ZHANG Hong-Cheng. Population dynamic characteristics and formation mechanisms of super high-yielding of two types of glutinous rice in the middle and lower reaches of the Yangtze Rive [J]. Acta Agronomica Sinica, 2025, 51(9): 2433-2453.
[3] CHEN Hui-Ying, HE Jia-Xin, ZHU Bin, HUANG Shi-Xuan, ZHOU Xing-You, WU Jun-Quan, YANG Mei-Yan. Whole genome analysis and biological characterization of phage vB_XaS_ HDB2 infected with Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2025, 51(8): 2087-2099.
[4] YANG Hai-Yang, WU Lin-Xuan, LI Bo-Wen, SHI Han-Feng, YUAN Xi-Long, LIU Jin-Zhao, CAI Hai-Rong, CHEN Shi-Yi, GUO Tao, WANG Hui. OsWRI3, identified based on QTL mapping, regulates seed shattering in rice [J]. Acta Agronomica Sinica, 2025, 51(7): 1712-1724.
[5] WANG Fen, WU Dong-Li, ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948.
[6] LEI Song-Han, FAN Jun-Yang, CHE Yan-Yi, DAI Yong-Dong, ZHENG Yu-Meng, TIAN Wei-Jiang, SANG Xian-Chun, WANG Xiao-Wen. Identification of an adaxially-curled-leaf mutant acl3 and function analysis of the regulated gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2025, 51(6): 1467-1479.
[7] LI Fu-Yuan, YANG Yi, MA Ji-Qiong, XU Ming-Hui, LIN Liang-Bin, SUN Yi-Ding. Cloning, hormone-induced expression analysis, and interaction protein screening of OsPUB4 in rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1690-1700.
[8] LI Zi-Xiang, HUANG Rong, WANG Zhi-Chao, LI Hong-Yan, TAN Jun-Xing, CHENG Yu, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamate acid on lodging resistance of direct seeding rice [J]. Acta Agronomica Sinica, 2025, 51(6): 1654-1664.
[9] WANG Meng-Ning, XIE Ke-Ran, GAO Ti, WANG Fei, REN Xiao-Jian, XIONG Dong-Liang, HUANG Jian-Liang, PENG Shao-Bing, CUI Ke-Hui. Effect of high temperature during the panicle initiation and heading stages on grain shape and filling and its relationship with grain weight in rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1347-1362.
[10] SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298.
[11] WENG Wen-An, XING Zhi-Peng, HU Qun, WEI Hai-Yan, LIAO Ping, ZHU Hai-Bin, QU Ji-Wei, LI Xiu-Li, LIU Gui-Yun, GAO Hui, ZHANG Hong-Cheng. Study on yield formation characteristics, energy and economic benefits of unmanned dry direct-seeding rice [J]. Acta Agronomica Sinica, 2025, 51(5): 1363-1377.
[12] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[13] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[14] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[15] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[3] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[4] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[5] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[6] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[7] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[8] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[9] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[10] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .