Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2538-2546.doi: 10.3724/SP.J.1006.2025.54023

• RESEARCH NOTES • Previous Articles     Next Articles

Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature

ZHUO Feng-Qi1(), TANG Zhen-San2, LEI Yu-Jun2, CHENG Li-Xiang2, ZHAO Tian-Tian1, LYU Tai3, YANG Chen3, ZHANG Feng1,2,*()   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2State Key Laboratory of Arid Land Crop Science / College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3Tianshui Institute of Agricultural sciences, Tianshui 741001, Gansu, China
  • Received:2025-02-18 Accepted:2025-06-03 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: zhangf@gsau.edu.cn E-mail:2809843461@qq.com;zhangf@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program(2022YFD1602104);Scientific Research and Innovation Platform for Colleges and Universities of Gansu Province(2024CXPT-01);Major Science and Technology Project of Gansu Province(21ZD11NA009);Industrial Support Program for Colleges and Universities of Gansu Province(2023CYZC-44)

Abstract:

This study investigated the effects of different cooking methods and starch retrogradation temperatures on the glycemic index (GI) of potato tubers, aiming to identify cultivars with inherently low GI values that could serve as candidates for nutrition-oriented breeding. Twenty major commercial cultivars and advanced breeding lines were used as experimental materials. Total starch (TS), amylose, dietary fiber, rapidly digestible starch (RDS), slowly digestible starch (SDS), resistant starch (RS), and GI were measured in baked, microwaved, and steamed tubers subjected to retrogradation at 40℃, 30℃, and 20℃. Statistical comparisons and stability analyses were conducted. The results showed that, compared to raw tubers, cooking significantly reduced the contents of TS (by 1.21% FW), RS (8.06% FW), and soluble dietary fiber (1.32% FW), while RDS, SDS, and insoluble dietary fiber increased significantly by 4.75% FW, 3.20% FW, and 5.63% FW, respectively. Among the cooking methods, microwave processing resulted in the lowest GI (69.52). As retrogradation temperature decreased from 40℃ to 20℃, GI and RDS content significantly declined, while RS significantly increased. At 20℃, the lowest GI (72.99) and RDS (5.74% FW) values were observed, along with the highest RS content (7.01% FW). GI was strongly positively correlated with RDS (r = 0.90) and SDS (r = 0.43), and negatively correlated with RS (r = -0.58) and dietary fiber content (r = -0.34). The cultivar Lucinda demonstrated consistently low and stable GI values across all cooking methods and retrogradation temperatures, with a GI of 65.26. RDS and SDS contents after cooking were identified as the main factors influencing GI, and their conversion to RS was dependent on retrogradation temperature. Microwave treatment proved to be the most effective method for reducing the GI in potato tubers. Lucinda was identified as the most promising low-GI cultivar across different cooking methods and retrogradation conditions.

Key words: potato, cooking methods, retrogradation temperature, gelatinized starch, glycemic index

Table 1

Experimental materials"

序号
Code
品种(系)
Variety (lines)
亲本
Parents
序号
Code
品种(系)
Variety (lines)
亲本
Parents
A1 1428-1-34 Ranger Russet×0730-180 A11 1428-1-27 Ranger Russet×陇薯7号 Ranger Russet× Longshu 7
A2 1412-1 大西洋×0730-185 Atlantic×0730-185 A12 1416-5 大西洋×0730-185 Atlantic×0730-185
A3 1423-1-20 布尔班克×0730-185
Russet Burbank×0730-185
A13 1428-1-26 Ranger Russet×陇薯7号
Ranger Russet×Longshu 7
A4 1425-1-13 Ivory Russet×陇薯7号
Ivory Russet×Longshu 7
A14 陇薯7号
Longshu 7
庄薯3号×菲多利 Zhuangshu 3×Fidelity
A5 Lucinda Carrera×Vivaldi A15 甘农薯18号
Gannongshu 18
Carminelle×H0940
A6 1423-1-8 布尔班克×0730-185
Russet Burbank×0730-185
A16 冀张薯12号
Jizhangshu 12
大西洋×99-6-36 Atlantic×99-6-36
A7 1428-1-31 Ranger Russet×0730-180 A17 布尔班克
Russet Burbank
Russet Burbank
A8 1402-1 大西洋×0730-185 Atlantic×0730-185 A18 希森6号
Xisen 6
Shepody×XS9304
A9 1428-1-35 Ranger Russet×0730-180 A19 甘农薯7号
Gannongshu 7
大西洋×陇薯7号Atlantic×Longshu 7
A10 1422-1-12 布尔班克×0730-185
Russet Burbank× 0730-185
A20 大西洋
Atlantic
B5141-6×Wauseon

Fig. 1

Total starch and amylose content in fresh tubers and those processed by baking, microwaving, and steaming A: total starch content of tubers after baked, microwaved and steamed processing; B: amylose content of tubers after baked, microwaved and steamed processing; CK is a fresh tuber. Capital letters indicate significant differences among cooking methods (P < 0.05)."

Fig. 2

Rapid digestion starch, slow digestion starch and resistant starch content of fresh tubers and those processed by baking, microwaving, and steaming under 40℃, 30℃ and 20℃ A: rapidly digestible starch content of tubers after baked, microwaved and steamed processing at retrogradation temperatures of 40℃, 30℃ and 20℃; B: slowly digestible starch content of tubers after baked, microwaved and steamed processing at retrogradation temperatures of 40℃, 30℃ and 20℃; C: resistant starch content of tubers after baked, microwaved and steamed processing at retrogradation temperatures of 40℃, 30℃ and 20℃. Capital letters indicate significant differences among cooking methods at the same retrogradation temperature (P < 0.05); lowercase letters indicate significant differences among retrogradation temperatures under the same cooking method (P < 0.05)."

Fig. 3

Total dietary fiber, insoluble dietary fiber and soluble dietary fiber content of fresh tubers and those processed by baking, microwaving, and steaming IDF, SDF and TDF represent insoluble dietary fiber, soluble dietary fiber and total dietary fiber, respectively. Capital letters indicate significant differences among cooking methods (P < 0.05)."

Fig. 4

Glycemic index and stability of tubers processed by baking, microwaving, and steaming under 40℃, 30℃, and 20℃ A: glycemic index of tubers at 40℃, 30℃ and 20℃ after baked, microwaved and steamed; B: stability of the glycemic index of varieties (lines) at 40℃, 30℃ and 20℃ after baked, microwaved and steamed; HB4-HB2, WB4-WB2 and ZZ4-ZZ2 represent 40-20℃ return temperature for baked, microwaved and steamed. Capital letters indicate significant differences among cooking methods at the same retrogradation temperature (P < 0.05); lowercase letters indicate significant differences among retrogradation temperatures under the same cooking method (P < 0.05)."

Fig. 5

Correlation analysis between glycemic index and various physicochemical components in potato tubers A-C: glycemic index at regenerative temperatures of 40℃, 30℃ and 20℃; D: total starch; E: amylose; F-H: rapid digestion of starch at 40℃, 30℃ and 20℃ recovery temperatures; I-K: slow digestion of starch at 40℃, 30℃ and 20℃ recovery temperature; L-N: resistant starch at 40℃, 30℃ and 20℃ regeneration temperature; O: dietary fiber. *, ** indicate significant correlations at the 0.05 and 0.01 levels, respectively."

Table 2

Stepwise regression analysis of glycemic index and related factors in potato tubers"

烹饪加工
Cooking
methods
回生温度
Regeneration temperature
回归模型
Regression
model
R2 调整R2
Adjust R2
P-value DW检验
DW test
烘焙Baked 40℃ Y=44.65+4.12RDS+2.19SDS 0.90 0.89 0.001 2.70
30℃ Y=44.62+4.09RDS+2.43SDS 0.90 0.89 0.001 2.04
20℃ Y=48.65+4.38RDS 0.71 0.69 0.001 2.19
微波Microwaved 40℃ Y=43.06+4.31RDS+1.84SDS 0.96 0.95 0.001 1.38
30℃ Y=40.53+4.59RDS+2.57SDS 0.97 0.97 0.001 1.84
20℃ Y=40.34+4.42RDS+3.28SDS 0.94 0.94 0.001 1.36
蒸制Steamed 40℃ Y=39.87+4.08RDS+2.79SDS 0.95 0.94 0.001 2.58
30℃ Y=39.11+4.05RDS+3.03SDS 0.97 0.97 0.001 2.66
20℃ Y=39.15+3.81RDS+3.38SDS 0.97 0.96 0.001 2.20
[1] Lal M K, Singh B, Sharma S, Singh M P, Kumar A. Glycemic index of starchy crops and factors affecting its digestibility: a review. Trends Food Sci Technol, 2021, 111: 741-755.
[2] Singh B, Raigond P, Dutt S, Lal M K, Jaiswal A, Changan S S, Koundal B. Nutrition in potato and its food products. In: Singh B, Kalia P, eds. Vegetables for Nutrition and Entrepreneurship. Singapore: Springer Nature Singapore, 2023. pp 179-201.
[3] Atkinson F S, Brand-Miller J C, Foster-Powell K, Buyken A E, Goletzke J. International tables of glycemic index and glycemic load values 2021: a systematic review. Am J Clin Nutr, 2021, 114: 1625-1632.
doi: 10.1093/ajcn/nqab233 pmid: 34258626
[4] Laurentin A, Edwards C A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem, 2003, 315: 143-145.
doi: 10.1016/s0003-2697(02)00704-2 pmid: 12672425
[5] Jenkins D J A, Ghafari H, Wolever T M S, Taylor R H, Jenkins A L, Barker H M, Fielden H, Bowling A C. Relationship between rate of digestion of foods and post-prandial glycaemia. Diabetologia, 1982, 22: 450-455.
pmid: 6286395
[6] Soltani A, Golmakani M T, Fazaeli M, Niakousari M, Hosseini S M H. Evaluating the effect of different physical pretreatments and cooking methods on nutritional (starch digestibility) and physicochemical properties of white rice grains (Fajr cultivar). LWT, 2023, 184: 115101.
[7] Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr, 1992, 46: S33-S50.
[8] Pycia K, Juszczak L, Gałkowska D, Witczak M. Physicochemical properties of starches obtained from Polish potato cultivars. Starch Stärke, 2012, 64: 105-114.
[9] Akerberg A K, Liljeberg H G, Granfeldt Y E, Drews A W, Björck I M. An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr, 1998, 128: 651-660.
pmid: 9482777
[10] Wang S J, Li C L, Copeland L, Niu Q, Wang S. Starch retrogradation: a comprehensive review. Comp Rev Food Sci Food Safe, 2015, 14: 568-585.
[11] Lal M K, Kumar A, Raigond P, Dutt S, Changan S S, Chourasia K N, Tiwari R K, Kumar D, Sharma S, Chakrabarti S K, et al. Impact of starch storage condition on glycemic index and resistant starch of cooked potato (Solanum tuberosum) tubers. Starch Stärke, 2021, 73: 1900281.
[12] Park E Y, Baik B K, Lim S T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J Cereal Sci, 2009, 50: 43-48.
[13] Tian J H, Chen S G, Chen J C, Liu D H, Ye X Q. Cooking methods altered the microstructure and digestibility of the potato. Starch Stärke, 2018, 70: 1700241.
[14] Kumar A, Sahoo U, Lal M K, Tiwari R K, Lenka S K, Singh N R, Gupta O P, Sah R P, Sharma S. Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J Cereal Sci, 2022, 106: 103501.
[15] Shah A, Wang Y C, Tao H, Zhang W C, Cao S Q. Insights into the structural characteristics and in vitro starch digestibility on parboiled rice as affected by ultrasound treatment in soaking process. Food Chem X, 2023, 19: 100816.
[16] 段惠敏, 刘玲玲, 夏露露, 袁剑龙, 程李香, 陈爱荣, 张峰. 低升糖型马铃薯品种的筛选. 中国农业科学, 2024, 57: 2295-2308.
doi: 10.3864/j.issn.0578-1752.2024.12.003
Duan H M, Liu L L, Xia L L, Yuan J L, Cheng L X, Chen A R, Zhang F. Screening of low glycemic potato varieties. Sci Agric Sin, 2024, 57: 2295-2308 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.12.003
[17] Engelen L, de Wijk R A, Prinz J F, Janssen A M, Weenen H, Bosman F. The effect of oral and product temperature on the perception of flavor and texture attributes of semi-solids. Appetite, 2003, 41: 273-281.
pmid: 14637326
[18] Liu K S, Liu Q. Enzymatic determination of total starch and degree of starch gelatinization in various products. Food Hydrocoll, 2020, 103: 105639.
[19] 焦梦悦, 高涵, 王伟娜, 田益玲. 四种测定直链淀粉和支链淀粉方法的比较. 食品工业科技, 2019, 40(12): 259-264.
Jiao M Y, Gao H, Wang W N, Tian Y L. Comparison of four methods for the determination of amylose and amylopectin. Sci Technol Food Ind, 2019, 40(12): 259-264 (in Chinese with English abstract).
[20] Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carrière F, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 2019, 14: 991-1014.
doi: 10.1038/s41596-018-0119-1 pmid: 30886367
[21] Li C, Hu Y M. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties. Food Chem, 2021, 353: 129449.
[22] Fernandes J M, Madalena D A, Pinheiro A C, Vicente A A. Rice in vitro digestion: application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. J Food Sci Technol, 2020, 57: 1393-1404.
doi: 10.1007/s13197-019-04174-x pmid: 32180635
[23] 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局. 食品中膳食纤维的测定: GB 5009.88-2023. 北京:中国标准出版社, 2023.
National Health Commission of the People’s Republic of China, State Administration for Market Regulation. Determination of dietary fiber in food: GB 5009.88-2023. Beijing: China Standard Press, 2023 (in Chinese).
[24] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105
[25] 段惠敏, 王郁, 程李香, 撒刚, 夏露露, 张峰. 马铃薯块茎末端糖化适应性、稳定性及薯条加工型品种(系)筛选. 作物学报, 2023, 49: 262-276.
doi: 10.3724/SP.J.1006.2023.24024
Duan H M, Wang Y, Cheng L X, Sa G, Xia L L, Zhang F. Tuber sugar-end adaptability, stability, and screening of French fries processing varieties in potato. Acta Agron Sin, 2023, 49: 262-276 (in Chinese with English abstract).
[26] García-Alonso A, Goñi I. Effect of processing on potato starch: in vitro availability and glycaemic index. Nahrung, 2000, 44: 19-22.
pmid: 10702994
[27] Jayanty S S, Diganta K, Raven B. Effects of cooking methods on nutritional content in potato tubers. Am J Potato Res, 2019, 96: 183-194.
doi: 10.1007/s12230-018-09704-5
[28] Wang B X, Chen S Y, Huang C H, Lin Y C, Liang Y X, Xiong W Y, Zhang B, Liu R, Ding L. Comparative study on the structural and in vitro digestion properties of starch within potato parenchyma cells under different cooking methods. Int J Biol Macromol, 2022, 223: 1443-1449.
[29] Oyeyinka S A, Umaru E, Olatunde S J, Joseph J K. Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Biosci, 2019, 28: 36-41.
doi: 10.1016/j.fbio.2019.01.005
[30] Oyeyinka S A, Akintayo O A, Adebo O A, Kayitesi E, Njobeh P B. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int J Biol Macromol, 2021, 176: 87-95.
doi: 10.1016/j.ijbiomac.2021.02.066 pmid: 33577814
[31] Thomas S, Vásquez-Benítez J D, Cuéllar-Cepeda F A, Mosquera- Vásquez T, Narváez-Cuenca C E. Vitamin C, protein, and dietary fibre contents as affected by genotype, agro-climatic conditions, and cooking method on tubers of Solanum tuberosum Group Phureja. Food Chem, 2021, 349: 129207.
[32] Ma Z Q, Yi C P, Wu N N, Tan B. Steaming retains more phenolics, dietary fiber, and antioxidant activities than cooking for rice with different milling processes. Cereal Chem, 2022, 99: 664-679.
[33] Kapcum C, Pasada K, Kantiwong P, Sroysang B, Phiwtawee J, Suphantharika M, Belur P D, Agoo E M G, Janairo J I B, Wongsagonsup R. Effects of different cooking methods on chemical compositions, in vitro starch digestibility and antioxidant activity of taro (Colocasia esculenta) corms. Int J Food Sci Technol, 2022, 57: 5144-5154.
[34] Xie Y L, Yan M X, Yuan S S, Sun S M, Huo Q G. Effect of microwave treatment on the physicochemical properties of potato starch granules. Chem Cent J, 2013, 7: 113.
doi: 10.1186/1752-153X-7-113 pmid: 23835351
[1] ZHU Jin-Cheng, YANG Qiu-Hua, CHENG Li-Xiang, LI Wen-Li, SHI Ming-Ming, LI Hui-Xia, ZHANG Feng. Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses [J]. Acta Agronomica Sinica, 2025, 51(9): 2307-2317.
[2] YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411.
[3] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[4] JIA Xiao-Xia, QI En-Fang, WEN Guo-Hong, MA Sheng, HUANG Wei, LYU He-Ping, LI Jian-Wu, QU Ya-Ying, DING Ning. Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’ [J]. Acta Agronomica Sinica, 2025, 51(9): 2285-2294.
[5] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[6] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[7] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[8] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[9] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[10] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[11] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[14] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[15] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .