Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (9): 1681-1690.doi: 10.3724/SP.J.1006.2009.01681
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
TIAN Yong-Chao,YANG Jie,YAO Xia,ZHU Yan,CAO Wei-Xing*
[1] Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J Plant Nutr, 1998, 21: 217-233 [2] Zhang N Q, Wang M H, Wang N. Precision agriculture—a worldwide overview. Comput Electron Agric, 2002, 36: 113-132 [3] Welsh J P, Wood G A, Godwin R J, Taylor J C, Earl R, Blackmore S, Knight S M. Developing strategies for spatially variable nitrogen application in cereals, part II: wheat. Biosyst Eng, 2003, 84: 495-511 [4] Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil, 1990, 122: 295-297 [5] Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using shortwave radiation from irrigated corn canopies. Agron J, 1996, 88: 1-5 [6] Curran P J. Remote sensing of foliar chemistry. Remote Sens Environ, 1989, 30: 271-278 [7] Richardson A J, Everitt J H, Gausman H W. Radiometric estimation of biomass and nitrogen content of Alicia grass. Remote Sens Environ, 1983, 13: 179-184 [8] Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron J, 1977, 69: 799-802 [9] Xue L H, Cao W X, Luo W H, Dai T B, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron J, 2004, 96: 135-142 [10] Bonham-Carter G F. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Comput Geosci, 1988, 14: 339-356 [11] Gates D M, Keegan H J, Schleter J C, Weidner V R. Spectral properties of plants. Appl Optics, 1965, 4: 11-20 [12] Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance. Int J Remote Sens, 1983, 4: 273-288 [13] Filella I, Peñuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens, 1994, 15: 1459-1470 [14] Wu C-S(吴长山), Xiang Y-Q(项月琴), Zheng L-F(郑兰芬). Estimating chlorophyll density of crop canopies using hyperspectral data. J Remote Sens (遥感学报), 2000, 4(3): 228-232 (in Chinese with English abstract) [15] Zhao C-J(赵春江), Huang W-J(黄文江), Wang J-H(王纪华). Studies on the red edge parameters of spectrum in winter wheat under different varieties, fertilizer and water treatments. Sci Agric Sin (中国农业科学), 2002, 35(8): 980-987(in Chinese with English abstract) [16] Collins W. Remote sensing of crop type and maturity. Photogramm Eng Rem S, 1978, 44: 43-55 [17] Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance. An inverted-Gaussian reflectance model. Int J Remote Sens, 1990, 11: 1755-1773 [18] Boochs F, Kupfer G, Dockter K, Kuhbauch W. Shape of the red edge as vitality indicator for plants. Int J Remote Sens, 1990, 11: 1741-1753 [19] Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens Environ, 2006, 101: 181-193 [20] Guyot G, Baret F, Jacquemoud S. Imaging spectroscopy for vegetation studies. In: Imaging Spectroscopy: Fundamentals and Prospective Application, Kluwer Academic Publishers (Dordrecht), 1992. pp 145-165 [21] Dawson T P, Curran P J. A new technique for interpolating the reflectance red edge position. Int J Remote Sens, 1998, 19: 2133-2139 [22] Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur J Agron, 2006, 24: 349-356 [23] Clevers J G P W, Jong S M D, Epema G F. Derivation of the red edge index using the MERIS standard band setting. Int J Remote Sens, 2002, 23: 3169-3184 [24] Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol, 1990, 7: 33-38 [25] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542-553 [26] Haboudane D, Miller J R, Pattey E. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337-352 [27] Lamb D W, Steyn-ross M, Schaares P. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Modelling and experimental observations. Int J Remote Sens, 2002, 23: 3619-3648 [28] Jongschaap R E E, Booij R. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status. Int J Appl Earth Obs, 2004, 5: 204-218 [29] Guanter L, Richter R, Moreno J. Spectral calibration of hyperspectral imagery using atmospheric absorption features. Appl Optics, 2006, 45: 2360-2370 Schläpfer D, McCubbin I B, Kindel B. Wildfire smoke analysis using the 760 nm oxygen absorption feature. 4th EARSeL Workshop on Imaging Spectroscopy, Warsaw, 2005. pp 1-10 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|