[1] Martre P, Porter J R, Jamieson P D, Triboï E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol, 2003, 133: 1959–1967
[2] Gallais A, Floriot M, Pommel B, Prioul J L, Hirel B, Andrieu B, Coque M, Quilleré I. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur J Agron, 2006, 24: 203–211
[3] Dong G-C(董桂春), Wang Y-L(王余龙), Zhou J(周娟), Zhang B(张彪), Zhang C-S(张传胜), Zhang Y-F(张岳芳), Yang L-X(杨连新), Huang J-H(黄建晔). Difference of nitrogen accumulation and translocation in conventional indica rice cultivars with different nitrogen use efficiency for grain output. Acta Agron Sin (作物学报), 2009, 35(1): 149–155 (in Chinese with English abstract)
[4] Zhang Y-L(张永丽), Yu Z-W(于振文). Effects of irrigation amount on nitrogen uptake, distribution, use, and grain yield and quality in wheat. Acta Agron Sin (作物学报), 2008, 34(5): 870–878 (in Chinese with English abstract)
[5] Peoples M B, Dalling M J. The Interplay between Protelysis and Amino Acid Metabolism during Senescence and Nitrogen Reallocation. In: Nooden L D, Leopold A C eds. Senescence Aging in Plant. San Diego: Academic Press, 1988. pp 181–217
[6] Thomas H. Enzymes of nitrogen mobilization in detached leaves of Lolium temulentum during senescence. Planta, 1978, 142: 161–169
[7] Malagoli P, Laine P, Rossato L, Ourry A. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. Ann Bot, 2005, 95: 853–861
[8] Zhang Y-H(张耀鸿), Wu J(吴洁), Zhang Y-L(张亚丽), Wang D-S(王东升), Shen Q-R(沈其荣). Genotypic variation of nitrogen accumulation and translocation in japonica rice (Oryza sativa L.)cultivars with different height. J Nanjing Agric Univ (南京农业大学学报), 2006, 29(2): 71–74 (in Chinese with English abstract)
[9] Zhang Y-H(张耀鸿), Zhang Y-L(张亚丽), Huang Q-W(黄启为), Xu Y-C(徐阳春), Shen Q-R(沈其荣). Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 616–621 (in Chinese with English abstract)
[10] Wang H, McCaig T N, Depauw R M, Clerke F R, Clerke J M. Physiological characteristics of recent Canada western red spring wheat cultivars: Components of grain nitrogen yield. Can J Plant Sci, 2003, 83(4): 699–707
[11] Gao J-F(高俊凤). Experimental Technique of Plant Physiology (植物生理学实验技术). Xi’an: World Publishing Company, 2000. pp 86–88 (in Chinese)
[12] Liu H-L(刘后利). Practical Cultivation in Oilseed Rape(实用油菜栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 128-143, 236–237 (in Chinese)
[13] Séverine S, Nathalie M J, Christian J, Judith B, Christophe S. Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout. Plant Physiol, 2005, 137: 1463–1473
[14] Palta J A, Fillery I R P. N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil. Aust J Agric Res, 1995, 46: 507–518
[15] Thomas K, Bertrand H, Emmanuel H, Frédéric D, Jacques L G. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res, 2007, 102: 22–32
[16] Rossato L, Le Dantec C, Laine P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein. J Exp Bot, 2002, 53: 265–275 |