Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (08): 1310-1317.doi: 10.3724/SP.J.1006.2010.01310

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping Grain Weight and Shape QTLs Using Four Sister Near Isogenic Lines (SNILs) of Rice (Oryza Sativa L.)

YAO Guo-Xin1,2, LI Jin-Jie1,ZHANG Qiang1,3,HU Guang-Long1,CHEN Chao1,TANG Bo1,ZHANG Hong-Liang1,LI Zi-Chao1,*   

  1. 1Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement,China Agricultural University,Beijing 100193,china;2School of Life Science and Technology,Xiaogan University,Xiaogan 432100,China;3Rice Research Institute,Jilin academy of Agricultural Sciences,Gongzhuling,136100,china
  • Received:2010-01-08 Revised:2010-04-20 Online:2010-08-12 Published:2010-05-20
  • Contact: LI Zi-Chao,E -mail: lizichao@cau.edu.cn; Tel: 010-62731414

Abstract: Grain weight (GW) is one of three major determinants of rice yield. In order to develop sister near isogenic lines (SNILs) for mapping GW and grain shape QTLs, we developed a cross with SLG-1 (as donor), one of the largest GW varieties in the world, and small GW variety Nipponbare(as recurrent), and selected larger GW plants to backcross with Nipponbare in different generations. Through analysis with total 73 BC4F1plants, we found four peaks in the frequency distribution of GW, and then selected four plants with the GW of each top peaks respectively to develop four SNIL populations. Using bulked segregant analysis(BSA), from 1 513 SSR makers evenly distributed on rice genome, we screened out 19 polymorphic SSR makers related to GW and grain shape. Using the LOD score 2.5 as the threshold, 12 QTLs for GW, grain length (GL), seed width (SW), and grain thickness (GT) were identified, which located on six regions of rice chromosome with explained phenotypic variation ranging from 7.22% to 53.38%. These QTL regions contained the cloned genes GS3 and GW2. Five GW and grain shape QTLs which were not be fine-mapped in previous research were also detected in the regions of RM6318–RM1367 on chromosome 2, RM5477–RM6417 on chromosome 3 and RM3370–RM1161 on chromosome 6. Among them, qGL3-1 with higher contribution was a new QTL for GL. The results provide a foundation for fine mapping and cloning new QTLs for GW and grain shape.

Key words:  Rice(Oriza sativa L.), Sister near-isogenic lines, Grain weight, Grain shape, QTL Rice(Oriza sativa L.), Grain weight, Grain shape, SNIL, QTL

[1]Khush G S. Productivity improvements in rice
[J].Nutr Rev
[2]Khush G S. Challenges for meeting the global food and nutrient needs in the new millennium. Proc Nutr Soc, 2001, 60: 15-26
[3]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein
[J].Theor Appl Genet
[4]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. Rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase
[J].Nat Genet
[5]Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication
[J].Nat Genet
[6]Xie X B, Song M H, Jin S N, Ahn S N, Suh J P, Hwang H G, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon
[J]. Theor Appl Genet
[7]Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet, 2008, 116: 613-622
[8]Ma L-L(马丽莲), Guo L-B(郭龙彪), Qian Q(钱前). Germplasm resources and genetic analysis of large grain in rice. Chin Bull Bot (植物学通报), 2006, 23(4): 395-401 (in Chinese with English abstract)
[9]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA
[J]. Nucl Acids Res
[10]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosomes. Theor Appl Genet, 1998, 76: 815-829
[11]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L
[J].). Theor Appl Genet
[12]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L
[J].). DNA Res
[13]Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L
[J].). Theor Appl Genet
[14]Zhang Q F, Shen B Z, Dai X K, Mei M H, Maroof M S A, Li B Z. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice
[J]. Proc Natl Acad Sci USA
[15]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607
[16]Lander E S, Green P. Mapmaker: an Interactive computer package for constructing primary genetic linkage maps of experimental and natural populations
[J]. Genomics
[17]Gao Y M, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects
[J].Theor Appl Genet
[18]McCouch S R, Cho Y G, Yato M, Paul E, Blinstrub M. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[19]Liu R-H(刘仁虎), Meng J-L(孟金陵). Mapdraw, a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)
[20]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503-15507
[21]Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2, A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
[22]Dorweiler L, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1, a genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235
[23]Wang R L, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature, 1999, 398: 236-239
[24]Zheng P Z, Allen W B, Roesler K, Williams M E, Zhang S R, Li J M, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. A phenylalanine in DGAT is a key determinant of oil content and composition in maize
[J].Nat Genet
[25]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1
[J].Proc Natl Acad Sci USA
[26]Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J F, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640-1644
[27]Yano M, Katayose Y, Ashikari M, Yamanouchi U,Monnac L, Fuseb T, Babac T, Yamamotoc K, Umeharaa Y, Nagamuraa Y, Sasakia T.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2483
[28]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2
[J].Proc Natl Acad Sci USA
[29]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions.
[30]Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745
[31]Ren Z H, Gao J P, Li L G, Cai X L, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter
[J].Nat Genet
[32]Chen J J, Ding J H, Ouyang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang J L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice
[J].Proc Natl Acad Sci USA
[33]Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice
[J].Nat Genet
[34]Tan L B, Li X R, Liu F X, Sun X Y, Li C G, Zhu Z F, Fu Y C, Cai H W, Wang X Q, Xie D X, Sun C Q. Control of a key transition from prostrate to erect growth in rice domestication
[J].Nat Genet
[35]Jin J, Wei H, Gao J P, Yang J, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. Genetic control of rice plant architecture under domestication
[J].Nat Genet
[36]Zhang D-L(张冬玲). Genetic Evolution and on Strategy of Core Collection of Chinese Cultivated Rice (Oryza sativa L.). PhD Dissertation of China Agricultural University, 2007 (in Chinese with English abstract)
[37]Plant Cell Physiol, 2002, 43: 1096-1105
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[7] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[8] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[9] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[13] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[14] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[15] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!