Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (09): 1505-1510.doi: 10.3724/SP.J.1006.2011.01505
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
GONG Zhi-Yun,SHI Guo-Xin,LIU Xiu-Xiu,YI Chuan-Deng,YU Heng-Xiu*
[1]Yu W, Han F, Kato A, Birchler J A. Characterization of a maize isochromosome 8S*8S. Genome, 2006, 49: 700–706 [2]Cheng Z K, Yan H H, Dang B Y. Microdissection and amplification of the chromosome arm 5S in a rice telo-tetrasomic. Chin Sci Bull, 1998, 43: 590–594 [3]Wang Z X, Ideta O, Yoshimura A, Iwata N. Identification of extra chromosome of aneuhaploids and tetrasomics in rice and the use of these aneuhaploids in genome analysis. Breed Sci, 1995, 45: 327–330 [4]Cheng Z K, Yan H H, Yu H X, Tang S C, Jiang J M, Gu M H, Zhu L H. Development and applications of a complete set of rice telotrisomics. Genetics, 2001, 157: 361–368 [5]Cheng Z-K(程祝宽), Yan H-H(颜辉煌), Yu H-X(于恒秀), Qian Q(前钱), Yi C-D(裔传灯), Gu M-H(顾铭洪), Zhu L-H(朱立煌). Fast assignment of DNA sequences to individual chromosome arms based on dosage effects from a set of rice telotrisomics. Acta Bot Sin (植物学报), 2000, 42(7): 708–711 (in Chinese with English abstract) [6]Houben A, Schubert I. DNA and proteins of plant centromeres. Curr Opin Plant Biol, 2003, 6: 554–560 [7]Malik H S, Henikoff S. Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev, 2002, 12: 711–718 [8]Nagaki K, Kashihara K, Murata M. A centromeric DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma, 2009, 118: 249–257 [9]Cheeseman I M, Drubin D G, Barnes G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol, 2002, 157: 199–203 [10]Clarke L, Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature, 1983, 305: 23–28 [11]Clarke L. Centromeres of budding and fission yeasts. Trends Genet, 1990, 6: 150–154 [12]Ananiev E V, Phillips R L, Rines H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA, 1998, 95: 13073–13078 [13]Kamm A, Galasso I, Schmidt T, Heslop-Harrison J S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol, 1995, 27: 853–862 [14]Sun X, Wahlstrom J, Karpen G. Molecular structure of a functional Drosophila centromere. Cell, 1997, 91: 1007–1019 [15]Schueler M G, Higgins A W, Rudd M K, Gustashaw K, Willard H F. Genomic and genetic definition of a functional human centromere. Science, 2001, 294: 109–115 [16]Wevrick R, Willard H F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci USA, 1989, 86: 9394–9398 [17]Ma J, Jackson S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res, 2006, 16: 251–259 [18]Henikoff S, Ahmad K, Malik H S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science, 2001, 293: 1098–1102 [19]Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res, 2002, 9: 117–121 [20]She C-W(佘朝文), Song Y-C(宋运淳). Advances in research of the structure and function of plant centromeres. Hereditas(遗传), 2006, 28(12): 1597–1606 (in Chinese with English abstract) [21]Cheng Z, Dong F, Langdon T, Ouyang S, Buell C R, Gu M, Blattner F R, Jiang J. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell, 2002, 14: 1691–1704 [22]Nagaki K, Cheng Z, Ouyang S, Talbert P B, Kim M, Jones K M, Henikoff S, Buell C R, Jiang J. Sequencing of a rice centromere uncovers active genes. Nat Genet, 2004, 36: 138–145 [23]Kurata N. OT. Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Jpn J Genet, 1978, 53: 251–255 [24]Wu H K. Note on preparing of pachytene chromosomes by double mordant. Sci Agric, 1967, 15: 40–44 [25]Jiang J, Gill B S, Wang G L, Ronald P C, Ward D C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA, 1995, 92: 4487–4491 [26]Cheng Z, Buell C R, Wing R A, Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res, 2002, 10: 379–387 [27]Diao X-M(刁现民), Sun J-S(孙敬三). Cytological and molecular biological research progress in plant somaclonal variation. Chin Bull Bot (植物学通报), 1999, 16(4): 372–377 (in Chinese with English abstract) [28]Larkin P J, Scowcroft W P. Somaclonal variation novel source of variability from cell culture for plant improvement. Theor Appl Genet, 1981, 60: 197–214 [29]Thomas J W, Schueler M G, Summers T J, Blakesley R W, McDowell J C, Thomas P J, Idol J R, Maduro V V, Lee-Lin S Q, Touchman J W, Bouffard G G, Beckstrom-Sternberg S M, Green E D. Pericentromeric duplications in the laboratory mouse. Genome Res, 2003, 13: 55–63 [30]Maggert K A, Karpen G H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics, 2001, 158: 1615–1628 [31]Amor D J, Choo K H. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet, 2002, 71: 695–714 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|