Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (10): 1771-1778.doi: 10.3724/SP.J.1006.2011.01771
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WU Hui-Min,HUANG Li-Yu,PAN Ya-Jiao,JIN Peng,FU Bin-Ying*
[1]Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88–95 [2]Hussain S S, Kayani M A, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog, 2011, 27: 297–306 [3]Sakuma Y, Liu Q, Joseph G. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophy Res Commun, 2002, 290: 998–1009 [4]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432 [5]Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 2004, 7: 465–471 [6]Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins, that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173–182 [7]Gu Y Q, Wildermuth M C, Chakravarthy S. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817–831 [8]Zhou J M, Tang X Y, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207–3218 [9]Hu Y B, Zhao L F, Chong K, Wang T. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis. Plant Physiol, 2008, 165: 1717–1725 [10]Xu K N, Xu X, Fukao T, Fukao P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald1 P C, Mackill D J. Sub1A is an ethylene response factor gene that confers submergence tolerance to rice. Nature, 2006, 442: 705–708 [11]Hattori Y, Nagai K, Nagai S. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460: 1026–1031 [12]Oh S J, Kim Y S, Kwon C W, Park H K, Jeong J S, Kim J K. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol, 2009, 150: 1368–1379 [13]Yamaguchi-Shinozakiaib K, Shinozaki K A. Nove1 cis-acting element in an Arabidopsis genes involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell, 1996, 6: 251–264 [14]Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol, 1994, 24: 701–713 [15]Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94: 1035–1040 [16]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803 [17]Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33: 751–763 [18]Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30 (12): 2191–2198 [19]Zhang M(张梅), Liu W(刘炜), Bi Y-P(毕玉平). Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Hereditas (Beijing)(遗传), 2009, 31(3): 236–244 (in Chinese) [20]Sun S, Yu J P, Chen F, Zhao T J, Fang X H, Li Y Q, Sui S F. TINY, a dehydration-responsive element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Biol Chem, 2006, 283: 6261–6271 [21]Wei G, Pan Y, Lei J, Zhu Y X. Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. Biochem Mol Biol, 2005, 38: 440–446 [22]Liua Y, Zhao T J, Liu J M, Liue W Q, Liua Q, Yan Y B, Zhou H M. The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett, 2006, 580: 1303–1308 [23]Yang S, Yang S C, Liu X, Liu Y, Liu L, Wang X, Hao D Y. Four divergent Arabidopsis ethylene-responsive element-binding factor domains bind to a target DNA motif with a universal CG step core recognition and different flanking bases preference. FEBS J, 2009, 276: 7177–7186 [24]Jin P(靳鹏), Huang L-Y(黄立钰), Wang D(王迪), Wu H-M(吴慧敏), Zhu L-H(朱苓华), Fu B-Y(傅彬英). Expression profiling of rice AP2/EREBP Genes responsive to abiotic stresses. Sci Agric Sin (中国农业科学), 2009, 42(11): 3765–3773 (in Chinese with English abstract) [25]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425 [26]Chen H(陈惠), Zhao Y(赵原), Chong K(种康). Improved high-efficiency system for rice transformation using mature embryo-derived calli. Chin Bull Bot (植物学通报), 2008, 25(3): 322–331 (in Chinese with English abstract) [27]Liu Qi, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406 [28]Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh1 H, Sasaya T, Choi I R, Omura T, Kikuchi S. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol, 2011, 52: 344–360 [29]Qin F, Sakuma Y, Tran L S P, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K I, Tanokura M, Shinozaki K, Yamaguchi-Shinozakia K. Arabidopsis DREB2A interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression. Plant Cell, 2008, 20: 1693–1707 [30]Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y , Shinwari Z K, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozak K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol, 2009, 151: 2046–57 [31]Zhu H-C(朱厚础). Experiment Guide of Protein Purification and Identification (蛋白质纯化与鉴定实验指南). Beijing: Science Press, 1999. pp 158–159 (in Chinese) |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[14] | WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961. |
[15] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
|