Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (11): 2061-2068.doi: 10.3724/SP.J.1006.2012.02061

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Differences of Nitrogen Absorption and Utilization in Rice Varieties with Different Productivity Levels

HUO Zhong-Yang1,GU Hai-Yong2,MA Qun1,YANG Xiong1,LI Min1,LI Guo-Ye1,DAI Qi-Gen1,XU Ke1,WEI Hai-Yan1,GAO Hui1,LU Yan3,ZHANG Hong-Cheng1,*   

  1. 1 Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; 3 Hi-Tech Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Province, Huaian 223300, China
  • Received:2012-04-26 Revised:2012-07-05 Online:2012-11-12 Published:2012-09-10
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220

Abstract:

The field experiment was carried out using 50 early-maturing late Japonica rice varieties, adopted in the region of Yangtze River, with seven nitrogen application levels (0, 150.0, 187.5, 225.0, 262.5, 300.0, 337.5 kg ha-1) to investigate the differences of the nitrogen absorption and utilization. We defined the highest rice yields under different nitrogen levels as the highest population productivity of N fertilization (HPPNF). The main results indicated that the top- and high-level yielding varieties had extremely significant larger amount of population spikelets than the middle- and low-level yielding varieties, and this superiority of total spikelets was mainly due to the extremely remarkable increase of spikelets per panicle. The nitrogen content and nitrogen absorption rate in plant at jointing, heading and maturity were all significantly increased with increasing productivity level. In transplanting to jointing and jointing to heading stages, there were no significant differences in ratio of nitrogen accumulation among four productivity levels, but a trend of decrease with the increase of productivity level. In heading to maturity stages, the ratio of nitrogen accumulation was significantly increased with increasing productivity level, which was 14.94% for top-level yielding cultivars. With the productivity level increasing, the apparent nitrogen recovery efficiency, agronomic nitrogen use efficiency and physiological nitrogen use efficiency were significantly increased. Taking into consideration of the production capacity and the apparent nitrogen recovery efficiency of all 50 rice varieties, 13 varieties with high yield and high nitrogen efficiency were selected and recommended.

Key words: Rice, Productivity, Nitrogen absorption and utilization

[1]Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森), Roland B, Christian W. Research strategy in proving N-fertilizer use efficiency of irrigation rice in China. Sci Agric Sin (中国农业科学), 2002, 35(9): 1095–1103 (in Chinese with English abstract)



[2]Liang X Q, Chen Y X, Li H, Tian G M, Zhang Z J, Ni W Z, He M M. Nitrogen interception in flood water of rice field in Taihu region of China. J Environ Sci, 2007, 19: 1474–1481



[3]Liu L-J(刘立军), Xu W(徐伟), Sang D-Z(桑大志), Liu C-L(刘翠莲), Zhou J-L(周家麟), Yang J-C(杨建昌). Site-specific nitrogen management increases fertilizer-nitrogen use efficiency in Rice. Acta Agron Sin (作物学报), 2006, 32(7): 987–994 (in Chinese with English abstract)



[4]Wang Y-L(王宜伦), Zhang X(张许), Tan J-F(谭金芳), Han Y-L(韩燕来). Problem and solutions of soil and fertilizers in agricultural sustainable development. Chin Agric Sci Bull (中国农学通报), 2008, 24(11): 278–281 (in Chinese with English abstract)



[5]Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site-specific nutrient management for irrigated rice in southeast China. Agron J, 2001, 93: 869–878



[6]Prasertsak A, Fukai S. Nitrogen availability and water stress interaction on rice growth and yield. Field Crops Res, 1997, 52: 249–260



[7]Wu J-X(伍菊仙), Ren W-J(任万军), Yang W-Y(杨文钰). Effects of nitrogen management on the growth and yield of rice by broadcasting seedlings among high standing-stubbles under no-tillage conditions. Hybrid Rice (杂交水稻), 2006, 21(4): 74–77 (in Chinese with English abstract)



[8]He F(贺帆). Effects of N rates on canopy microclimate and community health in irrigated rice. J Anhui Agric Sci (安徽农业科学), 2010, 38(5): 2285–2287 (in Chinese with English abstract)



[9]Liu W(刘武), Xie M-D(谢明德), Huang L(黄林), Cheng Z-W(程兆伟), Mo Y-L(莫亚丽), Zhan K(詹可), Zou Y-B(邹应斌). Effects of ransplanting density and nitrogen rate on dry matter accumulation and growth of leaves and tillers in super early rice. Crop Res (作物研究), 2008, 22(4): 243–248 (in Chinese with English abstract)



[10]Zhou J-M(周江明), Zhao L(赵琳), Dong Y-Y(董越勇), Xu J(徐进), Bian W-Y(边武英), Mao Y-C(毛杨仓), Zhang X-F(章秀福). Nitrogen and transplanting density interactions on the rice yield and N use rate. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(2): 274–281 (in Chinese with English abstract)



[11]Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use effciency in northeast Thailand. Field Crops Res, 1999, 64: 109–120



[12]Wada G, Aragones R C, Ando H. Effect of low-release fertilizer (meister) on nitrogen uptake and yield of rice plant. Jpn J Crop Sci, 1990, 60: 101–106



[13]Shi Y(石英), Ran W(冉炜), Shen Q-R(沈其荣), Li W(李伟). Dynamics of soil inorganic N in rice crop cultivated on upland condition and N absorption by rice supplied with different N fertilizer rate. J Nanjing Agric Univ (南京农业大学学报), 2001, 24(2): 61–65 (in Chinese with English abstract)



[14]Zhong X-H(钟旭华), Huang N-R(黄农荣), Zheng H-B(郑海波), Peng S-B(彭少兵), Buresh R. Effect of nitrogen application timing on grain yield, nitrogen uptake and use efficiency of hybrid rice in South China. Hybrid Rice (杂交水稻), 2007, 22(4): 62–66 (in Chinese with English abstract)



[15]Zhang H-C(张洪程), Ma Q(马群), Yang X(杨雄), Li M(李敏), Ge M-J(葛梦婕), Li G-Y(李国业), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉), Liu Y-Y(刘艳阳). The highest population productivity of nitrogen fertilization and its variation rules in rice cultivars. Acta Agron Sin (作物学报), 2012, 38(1): 86–98 (in Chinese with English abstract)



[16]Ma Q(马群), Yang X(杨雄), Li M(李敏), Li G-Y(李国业), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin (中国农业科学), 2011, 44(20): 4159–4169 (in Chinese with English abstract)



[17]Dong M-H(董明辉), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Meng L-M(孟立明). Research on the nitrogen absorption and utilization of different rice varieties. J Yangzhou Univ (Agric & Life Sci Edn) (扬州大学学报•农业与生命科学版), 2002, 23(4): 43–46 (in Chinese with English abstract)



[18]Zhang Y-F(张岳芳), Wang Y-L(王余龙), Zhang C-S(张传胜), Dong G-C(董桂春), Yang L-X(杨连新), Huang J-Y(黄建晔), Chen P-F(陈培峰), Gong K-C(龚克成). Differences of nitrogen absorption and utilization and their influences on grain yield of conventional indica rice cultivars. Jiangsu J Agric Sci (江苏农业学报), 2006, 22(4): 318–324 (in Chinese with English abstract)



[19]Yin C-Y(殷春渊), Zhang Q(张庆), Wei H-Y(魏海燕), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Ma Q(马群), Hang J(杭杰), Zhang S-F(张胜飞). Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci Agric Sin (中国农业科学), 2010, 43(1): 39–50 (in Chinese with English abstract)



[20]Fan J-B(樊剑波), Zhang Y-L(张亚丽), Wang D-S(王东升), Shen Q-R(沈其荣). Difference in N uptake capacity between different rice genotypes. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(6): 805–810 (in Chinese with English abstract)



[21]Jiang L-G(江立庚), Dai T-B(戴廷波), Wei S-Q(韦善清), Gan X-Q(甘秀芹), Xu J-Y(徐建云), Cao W-X(曹卫星). Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice. Acta Phytoecol Sin (植物生态学报), 2003, 27(4): 466–471 (in Chinese with English abstract)



[22]Xu F-X(徐富贤), Xiong H(熊洪), Xie R(谢戎), Zhang L(张林), Zhu Y-C(朱永川), Guo X-Y(郭晓艺), Yang D-J(杨大金), Zhou Y-B(周兴兵), Liu M(刘茂). Advance of rice fertilizer-nitrogen use efficiency. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(5): 1215–1225 (in Chinese with English abstract)



[23]Ying J F, Peng S B, Yang G Q, Zhou N, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments: II. Nitrogen accumulation and utilization efficiency. Field Crops Res, 1998, 57: 85–93



[24]Ye Q-B(叶全宝), Zhang H-C(张洪程), Wei H-Y(魏海燕), Zhang Y(张瑛), Wang B-F(汪本福), Xia K(夏科), Huo Z-Y(霍中洋), Dai Q-G(戴其根), Xu K(许轲). Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Acta Agron Sin (作物学报), 2005, 31(11): 1422–1428 (in Chinese with English abstract)

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!