Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (10): 1766-1774.doi: 10.3724/SP.J.1006.2013.01766
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Chen-Chen1,2,HOU Lei1,YIN Liang3,ZHAO Jin-Feng2,YUAN Shou-Jiang3,ZHANG Wen-Hui1,*,LI Xue-Yong2,*
[1]Aquino R C, Jennings P R. Inheritance and significance of dwarfism in an indica rice variety. Crop Sci, 1966, 6: 551–554[2]Tsai K H. Detection of a new semidwarfing gene, sd-8(t). Rice Genet Newsl, 1994, 11: 80–83 [3]Tanisaka T. Two useful semidwarf genes in short-culm mutant line HS90 of rice. Breed Sci, 1994, 44: 397–403[4]Padma A, Reddy G. Genetic behavior of five induced dwarf mutants in an indica rice cultivar. Crop Sci, 1977, 17: 860–863[5]Foster K W, Rutger J N. Inheritance of semidwarfism in rice, Oryza sativa L. Genetics, 1978, 88: 559–574[6]Silverstone A L, Sun T. Gibberellins and green revolution. Trends Plant Sci, 2000, 5: 1–2[7]Wolfgang S, Marc H E, Peter M C. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberelin20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048[8]Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G, Kitano H, Matsuoka M. Loss-of-function of a rice Gbbberelin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci, 2002, 52: 143–150[9]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702[10]Huang X-Z(黄先忠), Jiang C-F(蒋才富), Liao L-L(廖立力), Fu X-D(傅向东). Progress on molecular foundation of GA biosynthesis pathway and signaling. Chin Bull Bot (植物学通报), 2006, 23(5): 499–510 (in Chinese with English abstract)[11]Hou L(侯雷), Yuan S-J(袁守江), Yin L(尹亮), Zhao J-F(赵金凤), Wan G-F(万国峰), Zhang W-H(张文会), Li X-Y(李学勇). Phenotypic analysis and molecular characterization of two allelic mutants of the Dwarf18 gene in rice. Acta Agron Sin (作物学报), 2012, 38(8): 1416–1424 (in Chinese with English abstract) [12]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698[13]Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Xiang H, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140-2155 [14]Zhang Y-Y(张迎迎), He Z-H(何祖华). Gibberellin metabolism and signal transduction in higher plants. Plant Physiol J (植物生理学通讯), 2010, 46(7): 623–630 (in Chinese with English abstract)[15]Davies P J. Plant Hormones: Physiology, Biochemistry and Molecular Biology. The Netherlands: Kluwer Academic Publishers, 1995. pp 13–38 [16]Hedden P, Phillips A L. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5: 523–530[17]Prisic S, Peters R J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase: a potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol, 2007, 144: 445–454[18]Swain S M, Ross J J, Reid J B, Kamiya Y. Gibberellins and pea seed development: expression of the lhi,ls and le5839 mutations. Planta, 1995, 195: 426–433[19]Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992, 4: 119–128[20]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84[21]Ait-Ali T, Swain S M, Reid J B, Sun T, Kamiya Y. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J, 1997, 11: 443–454[22]Tomoaki S. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol, 2004, 134: 1642–1653 [23]Wang H(王慧), Liu Y-Z(刘永柱), Zhang J-G(张建国), Chen Z-Q(陈志强). Genetic analysis of space induced rice dwarf mutant CHA-1 and its response to gibberellic acid (GA3). Chin J Rice Sci(中国水稻科学), 2004, 18(5): 391–395 (in Chinese with English abstract) [24]Lanahan M B, Ho T H. Slender barley: a constitutive gibberellin-response mutant. Planta, 1988, 175: 107–114[25]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832[27]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecu-lar evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599[28]Saitou N, Nei M.The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406–425[29]Otomo K, Kenmoku H, Oikawa H, König W A, Toshima H, Mitsuhashi W, Yamane H, Sassa T, Toyomasu T. Biological functions of ent- and syn-copalyl diphosphate synthases in rice: key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J, 2004, 39: 886–893 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[12] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[13] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[14] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
[15] | LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895. |
|