Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (05): 816-822.doi: 10.3724/SP.J.1006.2014.00816

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning for Cellulose Synthetase Gene CcCesA1 from Jute (Corchorus capsularis L.), Antisense Vector Construction, and Transformation of Arabidopsis

ZHANG Gao-Yang,QI Jian-Min*,XU Jian-Tang,NIU Xiao-Ping,ZHANG Li-Wu,ZHANG Yu-Jia,TAO Ai-Fen,FANG Ping-Ping,LIN Li-Hui   

  1. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2013-06-14 Revised:2014-01-12 Online:2014-05-12 Published:2014-02-14
  • Contact: 祁建民, E-mail: qijm863@163.com
  • About author:祁建民, E-mail: qijm863@163.com

Abstract:

We took stem bark of jute cultivar 179 (Corchorus capsularis L.) as materials, successfully cloned the full-length cDNA of jute cellulose synthetase gene except 500 bp of 5' terminal,using homologous cloning and modified RACE techniques. The sequence length is 2529 bp, encoding a 627 amino acids protein. Gene alignment and protein structure analysis showed that it belongs to jute cellulose Synthetase gene family. Semi-quantitative RT-PCR analysis indicated that the expression level of CcCesA1 gene in different parts of plant was bark > root > leaf > bud > sticks. Using partial cDNA and 3' UTR region of CcCesA1 gene, constructed the antisense vector of the jute CcCesA1 gene, the positive plasmids were transformed into the model plant Arabidopsis thaliana. Southern blot analysis showed that the exogenous genes were transformed into Arabidopsis genome as one copy. The growth of tansgenic Arabidopsis was badly inhibited so that plants became dwarf with easing bending stem, shorter silique, and less silique numbers. This finding shows that CcCesA1 gene is involved in not only cellulose synthesis, but also other plant growth process.

Key words: Jute (Corchorus capsularis L.), Cellulose synthetase, RACE, Southern blot, Arabidopsis thalian

[1]Sarker R H, Al-Amin G M, Hoque M I. In vitro regeneration in three varieties of white jute (Corchorus capsularis L.). Plant Tissue Cult Biotechnol, 2007, 17: 11–18



[2]Pelmer D P. Cellulose biosynmesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plnat Mol Biol, 1999, 50: 245–276



[3]Pear J R, Kawagoe Y, Schreckengot W E. Higher plants contain homologs of the bacterial cesA genes encoding the catalytic subunit of cellulose synthetase. Proc Nad Acad Sci USA, 1996, 93: 12637–12642



[4]许雷, 刘一星, 方连玉. 大青杨纤维素合成酶PuCesA6基因cDNA的克隆及序列分析. 西南林业大学学报, 2012, 32(5): 26–32



Xu L, Liu Y X, Fang L Y. Cloning and sequence character analysis of full-length cDNA of cellulose synthetase PuCesA6 from populus ussuriebsis. J Southest For Univ, 2012, 32: 26–32 (in Chinese with English abstract)



[5]Fagarda M, Desnosa T, Despreza T, Goubeta F, Refregiera G, Mouillea G, McCannb M, Rayona C, Vernhettesa S, Höftea H. Procuste1 encode a cellulose Synthetase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell, 2000, 12: 2409–2423



[6]蒋杰, 揭雨成, 周清明, 周精华, 朱守晶, 邢虎成, 钟英丽. 苎麻纤维素合成酶基因BnCesAl全长cDNA的克隆与表达分析. 植物遗传资源学报, 2012, 13: 851–857



Jiang J, Jie Y C, Zhou Q M, Zhou J H, Zhou S J, Xing H C, Zhong Y L. Full-length cDNA cloning and express analysis of BnCesAl in ramie. J Plant Genet Resour, 2012, 13: 851–857 (in Chinese with English abstract)



[7]Brown R M, Saxena I M. Cellulose biosynthsis. a model for understanding the assembly of biopolymers. Plant Physiol Biochem, 2000, 38: 57–67



[8]Chu Z, Chen H, Zhang Y, Zhang Z, Zheng N, Yin B, Yan H, Zhu L, Zhao X, Yuan M, Zhang X, Xie Q. Knock out of the AtCESA2 gene affects microtubule orientation and causes abnonnal cell expansion in Arabidopsis. Plant Physiol, 2007, 143: 213–224



[9]邓雪柯, 殷建华, 曹毅. 3种5?RACE技术的比较与优化. 成都医学院学报, 2007, 2: 20–25



Deng X K, Yin J H, Cao Y. Comparison and improving of three 5?RACE methods. J Chengdu Med Coll, 2007, 2: 20–25 (in Chinese with English abstract)



[10]Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J L, Estrella L H. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep, 2004, 22: 63–70



[11]Updegraff D M. Semi-micro determination of cellulose in biological materials. Anal Biochem, 1969, 32: 420–424



[12]Doblin M S, Kurek I, Jacob Wild D, Delmer D P. CeUulose biosynthesis in pIants from genes to rosettes. Plnat Cell Physiol, 2002, 43: 1407–1420



[13]邰付菊, 李学宝. 植物纤维素生物合成及其相关酶类. 细胞生物学杂志, 2004, 26: 490–494



Tai F J, Li X B. Cellulose biosynthesis in plant and enzymes involved in it. Chin J Cell Biol, 2004, 26: 490–494 (in Chinese with English abstract)



[14]Zhong R, MorrisonW H, Freshour G D, HahnM G,Ye Z H. Expression of a mutant form of cellulose synthase AtCesA7 causes dorninant negative effect on cellulose biosynthesis. Plant Physiol, 2003, 132: 789–795



[15]Tumer S R, somerville C R. collapsed xylem phenotype of Arabidopsis identifies mutants dencient in cellulose deposition in the secondary cell wall. Plant Cell, 1997, 9: 689–701



[16]Taylor N G, Scheible W R, Cutler S, Somerville C R, Thmer S R. The irregular xylem 3 locus of Arabidopsis encodes a cellulose synthetase catalytic subunits are required for secondary cell wall synthesis. Plnat Cell, 1999, 11: 769–779



[17]Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S. Organization of cellulose synthetase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Thierry Desprez, 2007, 39: 15572–15577



[18]韩笑. 病原菌侵染与拟南芥纤维素合成酶基因表达分析. 华中农业大学硕士学位论文,2010. pp 45–48



Han X. Pathogen infection and cellulose Synthetase gene expression analysis in Arabidopsis. MS Thesis of Huazhong Agricultural University, Wuhan, China, 2010. pp 45–48 (in Chinese with English abstract)



[19]Lane D, Wiedemeier A, Peng L, Hofte H, Hocart H, Birch R, BaskinT, Arioli T, Burn J, Betzner A, Williamson R E. Temperature-sensitive alleles of rsw2 link the KORRIGAN endo 1, 4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol, 2001, 126: 278-288



[20]Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 1998, 279: 717–720



[21]Richmond T A, Somerville C R. The cellulose synthetase superfamily. Plant Physiol, 2000, 124: 495–498



[22]Fujita M, Himmelspach R, Ward J, Whittington A, Hasenbein N, Liu C, Truong T T, Galway M E, Mansfield S D, Hocart C H, Wasteneys G O. The anisotropy1 D604N Mutation in the Arabidopsis cellulose synthetase catalytic domain reduces cell wall crystallinity and the velocity of cellulose Synthetase complexes. Plant Physiol, 2013, 162: 74–85



[23]Lin X, Kaul S, Rounsley S, Shea T P, Benito M I, Town C D, Fujii C Y, Mason T, Bowman C L. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 1999, 402: 761–768

[1] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[2] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[3] RUAN Jun-Mei, ZHANG Jun, LIU You-Hong, DONG Wen-Jun, MENG Ying, DENG Ai-Xing, YANG Wan-Shen, SONG Zhen-Wei, ZHANG Wei-Jian. Effects of free air temperature increase on nitrogen utilization of rice in northeastern China [J]. Acta Agronomica Sinica, 2022, 48(1): 193-202.
[4] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[5] LIAN Yun, WANG Jin-She, WEI He, LI Jin-Ying, GONG Gui-Ming, WANG Shu-Feng, ZHANG Jing-Peng, LI Mao-Lin, GUO Jian-Qiu, LU Wei-Quo. Distribution survey of soybean cyst nematode of new race X12 in Gujiao city, Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(2): 237-244.
[6] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[7] YAN Cai-Xia,WANG Juan,ZHANG Hao,LI Chun-Juan,SONG Xiu-Xia,SUN Quan-Xi,YUAN Cui-Ling,ZHAO Xiao-Bo,SHAN Shi-Hua. Developing the key germplasm of Chinese peanut landraces based on phenotypic traits [J]. Acta Agronomica Sinica, 2020, 46(4): 520-531.
[8] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[9] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[10] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[11] WANG Yu-Kui,ZHANG He-Cui,BAI Xiao-Jing,LIAN Xiao-Ping,SHI Song-Mei,LIU Qian-Ying,ZUO Tong-Hong,ZHU Li-Quan. Characteristics and expression analysis of BoPINs family genes in Brassica oleracea [J]. Acta Agronomica Sinica, 2019, 45(8): 1270-1278.
[12] Yi YUAN,Shuang ZHU,Ting-Ting FANG,Jin-Jin JIANG,You-Ping WANG. Analysis of drought resistance and DNA methylation level of resynthesized Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(5): 693-704.
[13] Fang YUE,Lei WANG,Yan-Gui CHEN,Xiao-Xia XIN,Qin-Fei LI,Jia-Qin MEI,Zhi-Yong XIONG,Wei QIAN. A new method of synthesizing Brassica napus by crossing B. oleracea with the allohexaploid derived from hybrid between B. napus and B. rapa [J]. Acta Agronomica Sinica, 2019, 45(2): 188-195.
[14] Xiao-Jing BAI,Xiao-Ping LIAN,Yu-Kui WANG,He-Cui ZHANG,Qian-Ying LIU,Tong- Hong ZUO,Yi-Zhong ZHANG,Qin-Qin XIE,Deng-Ke HU,Xue-Song REN,Jing ZENG,Shao-Lan LUO,Min PU,Li-Quan ZHU. Cloning and analysis of BoCDPK14 in self-incompatibility Brasscia olerace [J]. Acta Agronomica Sinica, 2019, 45(12): 1773-1783.
[15] BAI Yan-Ming,LI Long,WANG Hui-Yan,LIU Yu-Ping,WANG Jing-Yi,MAO Xin-Guo,CHANG Xiao-Ping,SUN Dai-Zhen,JING Rui-Lian. Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat [J]. Acta Agronomica Sinica, 2019, 45(10): 1468-1477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!