[1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plan, 2003, 34: 259–270
[2]Davies P J. Plant Hormones: Biosynthesis, Signal Transduction, Action. London: Kluwer Academic Publishers, 2010. pp 27–28
[3]Wang Z, Mo Y, Qian S, Gu Y. Negative phototropism of rice root and its influencing factors. Sci China Ser C: Life Sci, 2002, 45: 485-496
[4]Mo Y, Wang Z, Qian S, Gu Y. Effect of indoleacetic acid (IAA) on the negative phototropism of rice root. Rice Sci, 2004, 11: 125–128
[5]汪月霞, 王忠, 刘全军, 赵会杰, 顾蕴洁, 钱晓旦, 袁志良. cpt1基因与水稻根负向光性运动的关系. 作物学报, 2009, 35: 1558–1561
Wang Y X, Wang Z, Liu Q J, Zhao H J, Gu Y J, Qian X D, Yuan Z L. Relationship between cpt1 gene and the negative phototropism in rice roots. Acta Agron Sin, 2009, 35: 1558–1561 (in Chinese with English abstract)
[6]Briggs W R. The phototropic responses of higher plants. Annu Rev Plant Physiol, 1963, 14: 311–352
[7]Evans M L. The action of auxin on plant cell elongation. CRC Crit Rev Plant Sci, 1985, 2: 317–365
[8]Harrison M A, Pickard B G. Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol, 1989, 89: 652–657
[9]Briggs W R. Phototropism: some history, some puzzles, and a look ahead. Plant Physiol, 2014, 164: 13–23
[10]Fleet C M, Sun T P. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol, 2005, 8: 77–85
[11]Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta, 2004, 218: 683–692
[12]Cao D, Cheng H, Wu W, Soo H M, Peng J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol, 2006, 142: 509–525
[13]Kohli A, Sreenivasulu N, Lakshmanan P, Kumar P P. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep, 2013, 32: 945–957
[14]Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011, 14: 290–295
[15]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol, 2010, 61: 651–679
[16]Sreenivasulu N, Harshavardhan V T, Govind G, Seiler C, Kohli A. Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 2012, 506: 265–273
[17]王忠, 李卫芳, 顾蕴洁, 陈刚, 石火英, 高煜珠. 水稻胚乳的发育及其养分输入的途径. 作物学报, 1995, 21: 520–527
Wang Z, Li W F, Gu Y J, Chen G, Shi H Y, Gao Y Z. Development of rice endosperm and the pathway of nutrients entering the endosperm. Acta Agron Sin, 1995, 21: 520–527 (in Chinese with English abstract)
[18]Li Y, Hagen G, Guilfoyle T J. An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell, 1991, 3: 1167–1175
[19]Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J, 2008, 53: 516–529
[20]Hoecker U, Toledo-Ortiz G, Bender J, Quail P H. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta, 2004, 219: 195–200
[21]Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol, 2012, 53: 1517–1534
[22]Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Juan M, Iglesias-Pedraz, Kircher S, Schäfer E, Fu X, Fan L M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475–479
[23]Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N P. DELLAs contribute to plant photo morphogenesis. Plant Physiol, 2007, 143: 1163–1172
[24]Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci, 2003, 8: 492–497
[25]Schwechheimer C. Understanding gibberellic acid signaling—are we there yet? Curr Opin Plant Biol, 2008, 11: 9–15
[26]Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J, 2010, 62: 653–662
[27]Piotrowska A, Bajguz A. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 2011, 72: 2097–2112
[28]Sharp R E. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ, 2002, 25: 211–222
[29]Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jürgens G, Paul Knox J, Wang M H. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J, 2010, 64: 764–774
[30]Chen C W, Yang Y W, Lur H S, Tsai Y G, Chang M C. A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol, 2006, 47: 1–13
[31]Chandler J W. Auxin as compère in plant hormone crosstalk. Planta, 2009, 231: 1–12
[32]Frigerio M, Alabad D, Pe´rez-Go´mez J, Garc?´a-Ca´rcel L, Phillips A L, Hedden P, Blázquez M A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol, 2006, 142: 553–563
[33]Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J, 2007, 52: 499–511
[34]刘婧, 柳艳梅, Takano M, 王宝山, 谢先芝. 光敏色素影响赤霉素调控的水稻幼苗光形态建成特征. 科学通报, 2010, 55: 2384-2390
Liu J, Liu Y M, Takano M, Wang B S, Xie X Z. Involvement of phytochromes in gibberellin-mediated photomorphogenesis in rice seedlings. Chin Sci Bull, 2010, 55: 2384–2390 (in Chinese with English abstract)
[35]Rock C D, Sun X. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta, 2005, 222: 98–106
[36]Yamaguchi M, Sharp R E. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ, 2010, 33: 590–603
[37]Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol, 2013, 197: 139–150 |